3-Axis Force Estimation of a Soft Skin Sensor using Permanent Magnetic Elastomer (PME) Sheet with Strong Remanence

Yushi Wang*, Mitsuhiro Kamezaki, Qichen Wang, Hiroyuki Sakamoto, Shigeki Sugano

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper describes a prototype of a novel Permanent Magnetic Elastomer (PME) sheet based skin sensor for robotic applications. Its working principle is to use a Hall effect transducer to measure the change of magnetic field. PME is a polymer that has Neodymium particles distributed inside it, after strong magnetization for anisotropy, the PME acquires strong remanent magnetization that can be comparable to that of a permanent magnet, in this work, we made improvement of the strength of the magnetic field of PME, so it achieved magnetic strength as high as 25 mT when there is no deformation. When external forces apply on the sensor, the deformation of PME causes a change in the magnetic field due to the change in the alignment of the magnetic particles. Compared with other soft magnetic sensors that employ similar technology, we implemented linear regression method to simplify the calibration, so we focus on the point right above the magnetometer. An MLX90393 chip is installed at the bottom of the PME as the magnetometer. Experimental results show that it can measure forces from 0.01-10 N. Calibration is confirmed effective even for shear directions when the surface of PME is less than 15 x 15 mm.

Original languageEnglish
Title of host publication2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages302-307
Number of pages6
ISBN (Electronic)9781665413084
DOIs
Publication statusPublished - 2022
Event2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2022 - Sapporo, Japan
Duration: 2022 Jul 112022 Jul 15

Publication series

NameIEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
Volume2022-July

Conference

Conference2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2022
Country/TerritoryJapan
CitySapporo
Period22/7/1122/7/15

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications
  • Software

Fingerprint

Dive into the research topics of '3-Axis Force Estimation of a Soft Skin Sensor using Permanent Magnetic Elastomer (PME) Sheet with Strong Remanence'. Together they form a unique fingerprint.

Cite this