Abstract
Let be a co-amenable compact quantum group. We show that a right coideal of is of quotient type if and only if it is the range of a conditional expectation preserving the Haar state and is globally invariant under the left action of the dual discrete quantum group. We apply this result to the theory of Poisson boundaries introduced by Izumi for discrete quantum groups and generalize a work of Izumi-Neshveyev-Tuset on SU q (N) for co-amenable compact quantum groups with the commutative fusion rules. More precisely, we prove that the Poisson integral is an isomorphism between the Poisson boundary and the right coideal of quotient type by a maximal quantum subgroup of Kac type. In particular, the Poisson boundary and the quantum flag manifold are isomorphic for any q-deformed classical compact Lie group.
Original language | English |
---|---|
Pages (from-to) | 271-296 |
Number of pages | 26 |
Journal | Communications in Mathematical Physics |
Volume | 275 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2007 Oct |
Externally published | Yes |
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics