A Context-Aware Green Information-Centric Networking Model for Future Wireless Communications

Ngoc Quang Nguyen*, Mohammad Arifuzzaman, Keping Yu, Takuro Sato

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


This research proposes a novel wireless information-centric networking (ICN) architecture, namely, Context-Aware Green ICN Model (CAGIM), which can adapt the power consumption of network nodes to optimized values according to the associated link utilization. The power adaption in ICN nodes is conducted through dynamically adjusting the link-rate corresponding to content popularity and traffic load to reduce wasteful energy consumption. Moreover, we propose a smart popularity-based caching strategy, called distinguished caching scheme (DCS), with the introduction of hot and cold-caching partitions of ICN node's cache storage for popular and non-popular content objects, respectively. DCS improves the content diversity of the cache storage by adjusting, for each content, the number of chunks to be cached at ICN nodes based on its type and popularity level. DCS thus can further decrease the network system power consumption, thanks to its improved cache hit that reduces network traffic load. Toward the goal of realizing a context-aware green wireless network system with efficient content delivery, we also design a Wi-Fi Direct based scheme as an alternative approach to minimize power consumption and latency by sharing essential/important content objects via direct communications with power-saving mechanisms in the case that wireless local area network connections are not available. The evaluation results show that CAGIM can improve network efficiency by reducing both hop-count and power consumption considerably compared with existing wireless network systems with different well-known caching schemes. This proposal enables a flexible and efficient content delivery mechanism for future networks with various real-life scenarios, like Green building, Green company, and Green campus content accesses.

Original languageEnglish
Pages (from-to)22804-22816
Number of pages13
JournalIEEE Access
Publication statusPublished - 2018 Apr 18


  • Adaptive link rate (ALR)
  • D2D content sharing
  • future Internet (FI)
  • information-centric networking (ICN)
  • name data networking (NDN)
  • next-generation wireless communications

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering


Dive into the research topics of 'A Context-Aware Green Information-Centric Networking Model for Future Wireless Communications'. Together they form a unique fingerprint.

Cite this