A global determination of {Mathematical expression} at LEP

P. D. Acton*, G. Alexander, J. Allison, P. P. Allport, K. J. Anderson, S. Arcelli, P. Ashton, A. Astbury, D. Axen, G. Azuelos, G. A. Bahan, J. T.M. Baines, A. H. Ball, J. Banks, G. J. Barker, R. J. Barlow, J. R. Batley, G. Beaudion, A. Beck, J. BeckerT. Behnke, K. W. Bell, G. Bella, P. Berlich, S. Bethke, O. Biebel, U. Binder, I. J. Bloodworth, P. Bock, B. Boden, H. M. Bosch, S. Bougerolle, B. B. Brabson, H. Breuker, R. M. Brown, R. Brun, A. Buijs, H. J. Burckhart, P. Capiluppi, R. K. Carnegie, A. A. Carter, J. R. Carter, C. Y. Chang, D. G. Charlton, P. E.L. Clarke, I. Cohen, W. J. Collins, J. E. Conboy, M. Cooper, M. Couch, M. Coupland, M. Cuffiani, S. Dado, G. M. Dallavalle, S. De Jong, P. Debu, L. A. del Pozo, M. M. Deninno, A. Dieckmann, M. Dittmar, M. S. Dixit, E. do Couto e Silva, E. Duchovni, G. Duckeck, I. P. Duerdoth, D. J.P. Dumas, P. A. Elcombe, P. G. Estabrooks, E. Etzion, H. G. Evans, F. Fabbri, M. Fincke-Keeler, H. M. Fischer, D. G. Fong, C. Fukunaga, A. Gaidot, O. Ganel, J. W. Gary, J. Gascon, R. F. McGowan, N. I. Geddes, C. Geich-Gimbel, S. W. Gensler, F. X. Gentit, G. Giacomelli, V. Gibson, W. R. Gibson, J. D. Gillies, J. Goldberg, M. J. Goodrick, W. Gorn, C. Grandi, F. C. Grant, J. Hagemann, G. G. Hanson, M. Hansroul, C. K. Hargrove, P. F. Harrison, J. Hart, P. M. Hattersley, M. Hauschild, C. M. Hawkes, E. Heflin, R. J. Hemingway, R. D. Heuer, J. C. Hill, S. J. Hillier, D. A. Hinshaw, C. Ho, J. D. Hobbs, P. R. Hobson, D. Hochman, R. J. Homer, A. K. Honma, S. R. Hou, C. P. Howarth, R. E. Hughes-Jones, R. Humbert, P. Igo-Kemenes, H. Ihssen, D. C. Imrie, A. C. Janissen, A. Jawahery, P. W. Jeffreys, H. Jeremie, M. Jimack, M. Jobes, R. W.L. Jones, P. Jovanovic, D. Karlen, K. Kawagoe, T. Kawamoto, R. K. Keeler, R. G. Kellogg, B. W. Kennedy, D. E. Klem, T. Kobayashi, T. P. Kokott, S. Komamiya, L. Köpke, J. F. Kral, R. Kowalewski, H. Kreutzmann, J. von Krogh, J. Kroll, M. Kuwano, P. Kyberd, G. D. Lafferty, F. Lamarche, W. J. Larson, J. G. Layter, P. Le Du, P. Leblanc, A. M. Lee, M. H. Lehto, D. Lellouch, P. Lennert, C. Leroy, J. Letts, S. Levegrün, L. Levinson, S. L. Lloyd, F. K. Loebinger, J. M. Lorah, B. Lorazo, M. J. Losty, X. C. Lou, J. Ludwig, M. Mannelli, S. Marcellini, G. Maringer, A. J. Martin, J. P. Martin, T. Mashimo, P. Mättig, U. Maur, J. McKenna, T. J. McMahon, J. R. McNutt, F. Meijers, D. Menszner, F. S. Merritt, H. Mes, A. Michelini, R. P. Middleton, G. Mikenberg, J. Mildenberger, D. J. Miller, R. Mir, W. Mohr, C. Moisan, A. Montanari, T. Mori, M. W. Moss, T. Mouthuy, B. Nellen, H. H. Nguyen, S. W. O'Neale, B. P. O'Neill, F. G. Oakham, F. Odorici, M. Ogg, H. O. Ogren, H. Oh, C. J. Oram, M. J. Oreglia, S. Orito, J. P. Pansart, B. Panzer-Steindel, P. Paschievici, G. N. Patrick, S. J. Pawley, P. Pfister, J. E. Pilcher, D. Pitman, D. E. Plane, P. Poffenberger, B. Poli, A. Pouladdej, E. Prebys, T. W. Pritchard, H. Przysiezniak, G. Quast, M. W. Redmond, D. L. Rees, K. Riles, S. A. Robins, D. Robinson, A. Rollnik, J. M. Roney, E. Ros, S. Rossberg, A. M. Rossi, M. Rosvick, P. Routenberg, K. Runge, O. Runolfsson, D. R. Rust, S. Sanghera, M. Sasaki, A. D. Schaile, O. Schaile, W. Schappert, P. Scharff-Hansen, P. Schenk, H. von der Schmitt, S. Schreiber, J. Schwiening, W. G. Scott, M. Settles, B. C. Shen, P. Sherwood, R. Shypit, A. Simon, P. Singh, G. P. Siroli, A. Skuja, A. M. Smith, T. J. Smith, G. A. Snow, R. Sobie, R. W. Springer, M. Sproston, K. Stephens, R. Ströhmer, D. Strom, H. Takeda, T. Takeshita, P. Taras, S. Tarem, P. Teixeira-Dias, N. J. Thackray, G. Transtromer, T. Tsukamoto, M. F. Turner, G. Tysarczyk-Niemeyer, D. Van den plas, R. Van Kooten, G. J. VanDalen, G. Vasseur, C. J. Virtue, A. Wagner, D. L. Wagner, C. Wahl, J. P. Walker, C. P. Ward, D. R. Ward, P. M. Watkins, A. T. Watson, N. K. Watson, M. Weber, P. Weber, S. Weisz, P. S. Wells, N. Wermes, M. A. Whalley, G. W. Wilson, J. A. Wilson, I. Wingerter, V. H. Winterer, T. Wlodek, N. C. Wood, S. Wotton, T. R. Wyatt, R. Yaari, Y. Yang, G. Yekutieli, M. Yurko, W. Zeuner, G. T. Zorn

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

83 Citations (Scopus)

Abstract

The value of the strong coupling constant, {Mathematical expression}, is determined from a study of 15 different observables in hadronic Z0 and τ decays. The study includes global event shape variables, jet production rates, energy correlations, the Z0 line shape and decay asymmetries and the hadronic branching fraction of τ-leptons. Differences between the αs values from the different observables can be consistently attributed to unknown higher order contributions to the[Figure not available: see fulltext.] calculations. These uncertaities may be parametrized by variations of the renormalization scale and of the parton virtuality to which the data are corrected, separately for each observable, resulting in a consistent description of the event shapes, jet rates and energy correlations with the value {Mathematical expression} in[Figure not available: see fulltext.]. The error is dominated by the theoretical uncertainties. Application of recent calculations which include the resummation of leading and next-to-leading logarithms to all orders for some observables confirm this result with a reduced sensitivity to renormalization scale variations. The Z0 line shapes and τ-lepton branching ratios yield {Mathematical expression} and {Mathematical expression}, respectively, in[Figure not available: see fulltext.]. These measurements and their uncertainties are entirely independent of each other and from event shape and jet observables; the good agreement of the resulting αs values thus constitutes an important consistency check of the reliability of perturbative QCD.

Original languageEnglish
Pages (from-to)1-24
Number of pages24
JournalZeitschrift für Physik C Particles and Fields
Volume55
Issue number1
DOIs
Publication statusPublished - 1992 Mar
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'A global determination of {Mathematical expression} at LEP'. Together they form a unique fingerprint.

Cite this