TY - JOUR
T1 - A Lagrangian variational formulation for nonequilibrium thermodynamics
AU - Gay-Balmaz, F.
AU - Yoshimura, H.
N1 - Funding Information:
★ F.G.B. is partially supported by the ANff project GEOMFLUID, W.1e Nfirosnteqcuoinlisbidrieurmtftfiheervmaroidaytinoanmalicfsoormf suilmatpiolensyosftesmimsple F.G.B. is partially supported by the ANff project GEOMFLUID, We first consider tffie variational formulation of simple ANff-14-CE23-0002-01; H.Y. is partially supported by JSPS Grant-Whermfirosdtyncaomnsiicdesrystteffimesvabreifaotrieongaolinfgorimntuolattffiieongeonfersailmspetle- i★n-Aid for Scientific ffesearch (26400408, 16KT0024, 24224004), We first consider tffie variational formulation of simple ANFf.fG-1.B4-.CisEp23a-r0ti0a0l2ly-0s1u;pHp.oYrt.eids pbayrtthiaellAyNsufpfpporrotjeedctbGyEJOSPMSFGLUraInDt-, Waseda University (Sff2017K-167), and the MEXT “Top Global thineegrmfoirofsdtdyinscacormnestiicedesrystteffime sv.abWreifaoetrifeoongllaoliwnfgotrfifminetuoslyatstfftiieeomngeaontfiecrsatilrmespaetle-inN-Affid-14f-oCrES2c3i-e0n0t0if2i-c01f;feHse.Yar.cihs p(a2r6t4ia0l0ly40s8u,pp16oKrtTed00b2y4,JS2P4S22G40ra0n4t)-, thermodynamic systems before going into tffie general set-UWnn-aAisveieddrasiftoUyrnPiSvroceirjeect”.snittyific(SffSffe2017K-167),s0e1a7rKch-16(276),40a0nd4d08the,he16MKETX00T24“,T2o4p22Global40lo0b4a),l ttingheenrmtoooffddistyfnfieacrremmteiocdssyysnsatteemmmicss.sbyWesftoeermfoesgllpooriwnegstffieinnetteosdystifnfteieSmgtueaneticcekraetrelbseaertt-g-University Project”. ment of tffiermodynamic systems presented in Stueckelberg UnaisveedrasitUynPivroerjesictty”.(Sff2017K-167), and the MEXT “Top Global tinegntooffdtfifsiecrrmetoedsyynsatmemics.syWstemfosllporwestefnfietesdyisnteSmtuaeticcketlrbeeartg-CU2on4p0iv5ye-r8rigs9i6ht3yt ©©P ro2200j11ect”.88, IIFFAACC (International Federation of Automatic Contr2ol5) Hmoesntitngof byt ffiEerlsemovierd Lytndami. Allc risyghstts emsreservperde.sented in Stueckelberg Peer review under responsibility of International Federation of Automatic Control. Copyright © 2018 IFAC 25 10.1016/j.ifacol.2018.06.006 Copyright © 2018 IFAC 25
Publisher Copyright:
© 2018
PY - 2018/1/1
Y1 - 2018/1/1
N2 - We present a variational formulation for nonequilibrium thermodynamics which extends the Hamilton principle of mechanics to include irreversible processes. The variational formulation is based on the introduction of the concept of thermodynamic displacement. This concept makes possible the definition of a nonlinear nonholonomic constraint given by the expression of the entropy production associated to the irreversible processes involved, to which is naturally associated a variational constraint to be used in the variational formulation. We consider both discrete (i.e., finite dimensional) and continuum systems and illustrate the variational formulation with the example of the piston problem and the heat conducting viscous fluid.
AB - We present a variational formulation for nonequilibrium thermodynamics which extends the Hamilton principle of mechanics to include irreversible processes. The variational formulation is based on the introduction of the concept of thermodynamic displacement. This concept makes possible the definition of a nonlinear nonholonomic constraint given by the expression of the entropy production associated to the irreversible processes involved, to which is naturally associated a variational constraint to be used in the variational formulation. We consider both discrete (i.e., finite dimensional) and continuum systems and illustrate the variational formulation with the example of the piston problem and the heat conducting viscous fluid.
KW - Lagrangian system
KW - Nonequilibrium thermodynamics
KW - constraints
KW - irreversible process
KW - variational principle
UR - http://www.scopus.com/inward/record.url?scp=85048936777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048936777&partnerID=8YFLogxK
U2 - 10.1016/j.ifacol.2018.06.006
DO - 10.1016/j.ifacol.2018.06.006
M3 - Article
AN - SCOPUS:85048936777
SN - 2405-8963
VL - 51
SP - 25
EP - 30
JO - 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
JF - 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
IS - 3
ER -