Abstract
We present a non-parametric approach to prediction of the n-back n ∈ {1, 2} task as a proxy measure of mental workload using Near Infrared Spectroscopy (NIRS) data. In particular, we focus on measuring the mental workload through hemodynamic responses in the brain induced by these tasks, thereby realizing the potential that they can offer for their detection in real world scenarios (e.g., difficulty of a conversation). Our approach takes advantage of intrinsic linearity that is inherent in the components of the NIRS time series to adopt a one-step regression strategy. We demonstrate the correctness of our approach through its mathematical analysis. Furthermore, we study the performance of our model in an inter-subject setting in contrast with state-of-the-art techniques in the literature to show a significant improvement on prediction of these tasks (82.50 and 86.40% for female and male participants, respectively). Moreover, our empirical analysis suggest a gender difference effect on the performance of the classifiers (with male data exhibiting a higher non-linearity) along with the left-lateralized activation in both genders with higher specificity in females.
Original language | English |
---|---|
Article number | 15 |
Journal | Frontiers in Human Neuroscience |
Volume | 11 |
DOIs | |
Publication status | Published - 2017 Feb 3 |
Externally published | Yes |
Keywords
- Curvilinear regression
- Linear regression
- Mental workload prediction
- Near-infrared spectroscopy
- Working memory
ASJC Scopus subject areas
- Neuropsychology and Physiological Psychology
- Neurology
- Psychiatry and Mental health
- Biological Psychiatry
- Behavioral Neuroscience