A novel, MRI compatible hand exoskeleton for finger rehabilitation

Zhen Jin Tang*, Shigeki Sugano, Hiroyasu Iwata

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Citations (Scopus)

Abstract

Robotic technology can be used to effectively regain the previous dexterity of stroke patients in clinical therapy. At the same time, brain images taken with MRI (Magnetic Resonance Imaging) are important for new rehabilitation treatments, and therefore it is useful to develop MRI compatible robot. With these ideas in mind, a novel, MRI compatible finger rehabilitation device was created (Fig.1.). It was also designed to be usable by many different people: it can be adjusted to different finger knuckles, and also the gap between one finger to another can be easily changed. By using an ultrasonic motor as its actuator, the device has been designed to be portable, with a high torque output. It enables the client to do extension and flexion rehabilitation exercises in two degrees of freedom (DOF) for each finger. Finally, several experiments have been carried out to evaluate the performance of the device.

Original languageEnglish
Title of host publication2011 IEEE/SICE International Symposium on System Integration, SII 2011
Pages118-123
Number of pages6
DOIs
Publication statusPublished - 2011 Dec 1
Event2011 IEEE/SICE International Symposium on System Integration, SII 2011 - Kyoto, Japan
Duration: 2011 Dec 202011 Dec 22

Publication series

Name2011 IEEE/SICE International Symposium on System Integration, SII 2011

Conference

Conference2011 IEEE/SICE International Symposium on System Integration, SII 2011
Country/TerritoryJapan
CityKyoto
Period11/12/2011/12/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'A novel, MRI compatible hand exoskeleton for finger rehabilitation'. Together they form a unique fingerprint.

Cite this