A pre-offering view system for teleoperators of heavy machines to acquire cognitive maps

Ryuya Sato*, Mitsuhiro Kamezaki, Satoshi Niuchi, Shigeki Sugano, Hiroyasu Iwata

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

In teleoperation of heavy machines, work efficiency will be 50% lower than manned operation because operators cannot obtain effective information about work sites due to the limitation of current monitoring systems. Operators would have opportunities to obtain such information before work (about a week required to introduce teleoperation systems) and during work. As a fundamental study to support operator's spatial cognition, we developed views to provide spatial information of work sites before work. Humans have cognitive maps which are created based on knowledge acquired from survey and route perspectives. To make operators acquire the above two knowledge, we provide a bird's-eye view that can be changed by operators to acquire a knowledge from survey perspective, and a view from operator's viewpoint that can be changed by operator's intention to acquire a knowledge from route perspective. To evaluate two pre-offering views, we preformed experiments using a virtual reality simulator. The results indicated that a view to acquire a knowledge from survey perspective could help operators plan totally and one to acquire a knowledge from route perspective could help operators plan locally, and could increase work efficiency.

Original languageEnglish
Title of host publicationSSRR 2017 - 15th IEEE International Symposium on Safety, Security and Rescue Robotics, Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages61-66
Number of pages6
ISBN (Electronic)9781538639221
DOIs
Publication statusPublished - 2017 Oct 26
Event15th IEEE International Symposium on Safety, Security and Rescue Robotics, SSRR 2017 - Shanghai, China
Duration: 2017 Oct 112017 Oct 13

Publication series

NameSSRR 2017 - 15th IEEE International Symposium on Safety, Security and Rescue Robotics, Conference

Other

Other15th IEEE International Symposium on Safety, Security and Rescue Robotics, SSRR 2017
Country/TerritoryChina
CityShanghai
Period17/10/1117/10/13

ASJC Scopus subject areas

  • Artificial Intelligence
  • Safety, Risk, Reliability and Quality
  • Control and Optimization
  • Safety Research

Fingerprint

Dive into the research topics of 'A pre-offering view system for teleoperators of heavy machines to acquire cognitive maps'. Together they form a unique fingerprint.

Cite this