TY - JOUR
T1 - A Prescribed Energy Problem for a Singular Hamiltonian System with a Weak Force
AU - Tanaka, Kazunaga
PY - 1993/5/1
Y1 - 1993/5/1
N2 - We consider the existence of periodic solutions of a Hamiltonian system q + ∇V(q) = 0 (HS) such that 1 2| q (t)|2+ V(q(t)) = H for all t, where q ∈ RN (N ≥ 3), H <0 is a given number, V(q) ∈ C2(RN\(0), R) is a potential with a singularity, and ∇V/(q) denotes its gradient. We consider a potential V(q) which behaves like -l/|q|α (α ∈ (0, 2)). In particular, in case V(q) satisfies ∇V(q) q ≤ -α1V(q) for all q ∈ RN\(0), and ∇V(q) q ≤ -α2V(q) for all 0 < |q| ≤ R0 for α1, α2 ∈ (0, 2), R0 = 0, we prove the existence of a generalized solution that may enter the singularity 0. Moreover, under the assumption V(q) = - 1 |q|α + W(q), where 0 < α < 2 and |q|αW(q), |q|α + 1 ∇W(q), |q|α + 2 ∇2W(q) → 0 as |q| → 0, we estimate the number of collisions of generalized solutions. In particular, we get the existence of a classical (non-collision) solution of (HS) for α ∈ (l, 2) when N ≥ 4 and for α ∈ (4/3, 2) when N = 3.
AB - We consider the existence of periodic solutions of a Hamiltonian system q + ∇V(q) = 0 (HS) such that 1 2| q (t)|2+ V(q(t)) = H for all t, where q ∈ RN (N ≥ 3), H <0 is a given number, V(q) ∈ C2(RN\(0), R) is a potential with a singularity, and ∇V/(q) denotes its gradient. We consider a potential V(q) which behaves like -l/|q|α (α ∈ (0, 2)). In particular, in case V(q) satisfies ∇V(q) q ≤ -α1V(q) for all q ∈ RN\(0), and ∇V(q) q ≤ -α2V(q) for all 0 < |q| ≤ R0 for α1, α2 ∈ (0, 2), R0 = 0, we prove the existence of a generalized solution that may enter the singularity 0. Moreover, under the assumption V(q) = - 1 |q|α + W(q), where 0 < α < 2 and |q|αW(q), |q|α + 1 ∇W(q), |q|α + 2 ∇2W(q) → 0 as |q| → 0, we estimate the number of collisions of generalized solutions. In particular, we get the existence of a classical (non-collision) solution of (HS) for α ∈ (l, 2) when N ≥ 4 and for α ∈ (4/3, 2) when N = 3.
UR - http://www.scopus.com/inward/record.url?scp=38249001730&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38249001730&partnerID=8YFLogxK
U2 - 10.1006/jfan.1993.1054
DO - 10.1006/jfan.1993.1054
M3 - Article
AN - SCOPUS:38249001730
SN - 0022-1236
VL - 113
SP - 351
EP - 390
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
IS - 2
ER -