A source of antihydrogen for in-flight hyperfine spectroscopy

N. Kuroda*, S. Ulmer, D. J. Murtagh, S. Van Gorp, Y. Nagata, M. Diermaier, S. Federmann, M. Leali, C. Malbrunot, V. Mascagna, O. Massiczek, K. Michishio, T. Mizutani, A. Mohri, H. Nagahama, M. Ohtsuka, B. Radics, S. Sakurai, C. Sauerzopf, K. SuzukiM. Tajima, H. A. Torii, L. Venturelli, B. Wuâ̈nschek, J. Zmeskal, N. Zurlo, H. Higaki, Y. Kanai, E. Lodi Rizzini, Y. Nagashima, Y. Matsuda, E. Widmann, Y. Yamazaki

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

128 Citations (Scopus)

Abstract

Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart - hydrogen - is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.

Original languageEnglish
Article number3089
JournalNature communications
Volume5
DOIs
Publication statusPublished - 2014 Jan 21
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'A source of antihydrogen for in-flight hyperfine spectroscopy'. Together they form a unique fingerprint.

Cite this