TY - GEN
T1 - Accurate, dense 3D reconstruction of moving and still objects from dynamic stereo sequences based on Temporal Modified-RANSAC and feature-cut
AU - Tatematsu, Naotomo
AU - Ohya, Jun
PY - 2012
Y1 - 2012
N2 - This paper improves the authors' conventional method for reconstructing the 3D structure of moving and still objects that are tracked in the video and/or depth image sequences acquired by moving cameras and/or range finder. The authors proposed a Temporal Modified-RANSAC based method [1] that (1) can discriminate each moving object from the still background in color image and depth image sequences acquired by moving stereo cameras or moving range finder, (2) can compute the stereo cameras' egomotion, (3) can compute the motion of each moving object, and (4) can reconstruct the 3D structure of each moving object and the background. However, the TMR based method has the following two problems concerning the 3D reconstruction: lack of accuracy of segmenting into each object's region and sparse 3D reconstructed points in each object's region. To solve these problems of our conventional method, this paper proposes a new 3D segmentation method that utilizes Graph-cut, which is frequently used for segmentation tasks. First, the proposed method tracks feature points in the color and depth image sequences so that 3D optical flows of the feature points in every N frames are obtained. Then, TMR classifies all the obtained 3D optical flows into regions (3D flow set) for the background and each moving object; simultaneously, the rotation matrix and the translation vector for each 3D flow set are computed. Next, Graph-Cut using the energy function that consists of color probability, structure probability and a-priori probability is performed so that pixels in each frame are segmented into object regions and the background region. Finally, 3D point clouds are obtained from the segmentation result image and depth image, and then the point clouds are merged using the rotation and translation from the N-th frame prior to the current frame so that 3D models for the background and each moving object are constructed with dense 3D point data.
AB - This paper improves the authors' conventional method for reconstructing the 3D structure of moving and still objects that are tracked in the video and/or depth image sequences acquired by moving cameras and/or range finder. The authors proposed a Temporal Modified-RANSAC based method [1] that (1) can discriminate each moving object from the still background in color image and depth image sequences acquired by moving stereo cameras or moving range finder, (2) can compute the stereo cameras' egomotion, (3) can compute the motion of each moving object, and (4) can reconstruct the 3D structure of each moving object and the background. However, the TMR based method has the following two problems concerning the 3D reconstruction: lack of accuracy of segmenting into each object's region and sparse 3D reconstructed points in each object's region. To solve these problems of our conventional method, this paper proposes a new 3D segmentation method that utilizes Graph-cut, which is frequently used for segmentation tasks. First, the proposed method tracks feature points in the color and depth image sequences so that 3D optical flows of the feature points in every N frames are obtained. Then, TMR classifies all the obtained 3D optical flows into regions (3D flow set) for the background and each moving object; simultaneously, the rotation matrix and the translation vector for each 3D flow set are computed. Next, Graph-Cut using the energy function that consists of color probability, structure probability and a-priori probability is performed so that pixels in each frame are segmented into object regions and the background region. Finally, 3D point clouds are obtained from the segmentation result image and depth image, and then the point clouds are merged using the rotation and translation from the N-th frame prior to the current frame so that 3D models for the background and each moving object are constructed with dense 3D point data.
KW - 3D-reconstruction
KW - Detect multiple moving objects
KW - Egomotion
KW - Temporal Modified-RANSAC
UR - http://www.scopus.com/inward/record.url?scp=84857001761&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857001761&partnerID=8YFLogxK
U2 - 10.1117/12.908037
DO - 10.1117/12.908037
M3 - Conference contribution
AN - SCOPUS:84857001761
SN - 9780819489487
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Proceedings of SPIE-IS and T Electronic Imaging - Intelligent Robots and Computer Vision XXIX
T2 - Intelligent Robots and Computer Vision XXIX: Algorithms and Techniques
Y2 - 23 January 2012 through 24 January 2012
ER -