Acid-base catalytic effects on reduction of methanol in hot water

Satoshi Inaba*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


We have performed a number of quantum chemical simulations to examine the reduction process of methanol in hot water. Methanol is converted into a methane by capturing a hydrogen molecule and leaving a water molecule behind. The required energy for the reduction is too high to proceed in the gas phase. The energy barrier for the reduction of methanol is reduced by the catalytic effect of water molecules when we consider the reduction in aqueous solution. However, the calculated reduction rate is still much slower than that found experimentally. The ion product of water tends to increase in hot water, even though it eventually decreases at the high temperature of supercritical water. It is valuable to consider the acid-base catalytic effects on the reduction of methanol in hot water. The significant reduction of the energy barrier is accomplished by the acid-base catalytic effects due to hydronium or hydroxyde. Mean collision time between a hydronium and a methanol in hot water is shorter than the reduction time, during which a methanol is converted into a methane. The calculated reduction rate with the acid-base catalytic effects agrees well with that determined by laboratory experiments. The present study reveals a crucial role of the acid-base catalytic effects on reactions in hot water.

Original languageEnglish
Article number373
Issue number4
Publication statusPublished - 2019 Apr


  • Acid-base
  • Hot water
  • Methane
  • Methanol
  • Reaction rate

ASJC Scopus subject areas

  • Catalysis
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Acid-base catalytic effects on reduction of methanol in hot water'. Together they form a unique fingerprint.

Cite this