TY - JOUR
T1 - Adsorption of boron by volcanic ash soils distributed in Japan
AU - Kurokawa, Ryogo
AU - Kamura, Kazuo
PY - 2018/5/1
Y1 - 2018/5/1
N2 - Batch adsorption experiments with six volcanic ash soils from Japan were performed under various aqueous chemical conditions to elucidate boron adsorption mechanisms. Boron adsorption increased between pH levels of 5 to 8, remained constant between pH levels of 8 and 9, and then decreased pH levels of 9 to 11. Boron adsorption was closely correlated with borate ion concentrations at pH < 8 and anion exchange capacity at pH > 9. Boron adsorption followed a linear adsorption isotherm between 0.4 and 88.4 mg B L–1. Boron adsorption was influenced by coexisting anion concentration; the greater the coexisting anion concentration, the greater concentration of boron adsorption. This trend suggests that boron adsorbed to the soil by forming inner sphere complexes. no statistically significant correlation coefficients at 95% confidence level were calculated between maximum boron adsorption and allophane, imogolite, ferrihydrite or organic carbon concentrations in the soils. However, multiple regression analysis had a high adjusted R2 value of 0.96 when allophane, imogolite and ferrihydrite concentrations were used to estimate maximum boron adsorption, suggesting these amorphous minerals are especially important for boron adsorption. In summary, these results confirm earlier work demonstrating the importance of amorphous minerals for boron adsorption and provided a statistical description of the relationship between these properties.
AB - Batch adsorption experiments with six volcanic ash soils from Japan were performed under various aqueous chemical conditions to elucidate boron adsorption mechanisms. Boron adsorption increased between pH levels of 5 to 8, remained constant between pH levels of 8 and 9, and then decreased pH levels of 9 to 11. Boron adsorption was closely correlated with borate ion concentrations at pH < 8 and anion exchange capacity at pH > 9. Boron adsorption followed a linear adsorption isotherm between 0.4 and 88.4 mg B L–1. Boron adsorption was influenced by coexisting anion concentration; the greater the coexisting anion concentration, the greater concentration of boron adsorption. This trend suggests that boron adsorbed to the soil by forming inner sphere complexes. no statistically significant correlation coefficients at 95% confidence level were calculated between maximum boron adsorption and allophane, imogolite, ferrihydrite or organic carbon concentrations in the soils. However, multiple regression analysis had a high adjusted R2 value of 0.96 when allophane, imogolite and ferrihydrite concentrations were used to estimate maximum boron adsorption, suggesting these amorphous minerals are especially important for boron adsorption. In summary, these results confirm earlier work demonstrating the importance of amorphous minerals for boron adsorption and provided a statistical description of the relationship between these properties.
UR - http://www.scopus.com/inward/record.url?scp=85047139274&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85047139274&partnerID=8YFLogxK
U2 - 10.2136/sssaj2017.12.0427
DO - 10.2136/sssaj2017.12.0427
M3 - Article
AN - SCOPUS:85047139274
SN - 0361-5995
VL - 82
SP - 671
EP - 677
JO - Soil Science Society of America Journal
JF - Soil Science Society of America Journal
IS - 3
ER -