Adversarial Learning-based Bias Mitigation for Fatigue Driving Detection in Fair-Intelligent IoV

Mingzhe Han, Jun Wu, Ali Kashif Bashir, Wu Yang, Muhammad Imran, Nidal Nasser

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Fatigue driving is one of main causes of traffic accidents. To avoid such traffic accidents, divers' fatigue detection has been used in Intelligent Internet of Vehicles (IIoV). IIoV usually dynamically allocate computing resources according to drivers' fatigue degree to improve the real-time of fatigue detection model. However, the traditional fatigue detection model may have bias on certain groups, which would further cause unfair resource allocation. To solve the problem, this paper proposes an improved IIoV framework, named Fair-Intelligent Internet of Vehicles (FIIoV). Compared with IIoV, we improve two layers in FIIoV, i.e., the detection layer and the normalization layer. The detection layer uses Convolutional Neural Network (CNN) to detect drivers' fatigue degree, and then uses adversarial network to achieve fairness of detection models. The normalization layer achieves the distribution of different sensitive feature values from historical detection results generated in the detection layer, and then uses the distribution to normalize the output of the detection layer to improve the fairness and accuracy of fatigue detection models. Simulation results show that both accuracy and fairness of FIIoV is improved compared with the original IIoV.

Original languageEnglish
Title of host publication2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728182988
DOIs
Publication statusPublished - 2020 Dec
Externally publishedYes
Event2020 IEEE Global Communications Conference, GLOBECOM 2020 - Virtual, Taipei, Taiwan, Province of China
Duration: 2020 Dec 72020 Dec 11

Publication series

Name2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings

Conference

Conference2020 IEEE Global Communications Conference, GLOBECOM 2020
Country/TerritoryTaiwan, Province of China
CityVirtual, Taipei
Period20/12/720/12/11

ASJC Scopus subject areas

  • Media Technology
  • Modelling and Simulation
  • Instrumentation
  • Artificial Intelligence
  • Computer Networks and Communications
  • Hardware and Architecture
  • Software
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Adversarial Learning-based Bias Mitigation for Fatigue Driving Detection in Fair-Intelligent IoV'. Together they form a unique fingerprint.

Cite this