An approach of moment-based algorithm for noisy ICA models

Daisuke Ito*, Noboru Murata

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Factor analysis is well known technique to uncorrelate observed signals with Gaussina noises before ICA (Independent Component Analysis) algorithms are applied. However, factor analysis is not applicable when the number of source signals are more than that of Ledermann's bound, and when the observations are contaminated by non-Gaussian noises. In this paper, an approach is proposed based on higher-order moments of signals and noises in order to overcome those constraints.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsCarlos G. Puntonet, Alberto Prieto
PublisherSpringer Verlag
Pages343-349
Number of pages7
ISBN (Electronic)3540230564, 9783540230564
DOIs
Publication statusPublished - 2004

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3195
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'An approach of moment-based algorithm for noisy ICA models'. Together they form a unique fingerprint.

Cite this