Abstract
Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.
Original language | English |
---|---|
Pages (from-to) | 2246-2267 |
Number of pages | 22 |
Journal | Nonlinearity |
Volume | 30 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2017 Apr 19 |
Keywords
- CKP hierarchy
- bilinear equations
- semi-discrete Degasperis-Procesi equation
- tau-functions
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics
- Physics and Astronomy(all)
- Applied Mathematics