TY - GEN
T1 - An optimal design method for reducing brake squeal in disc brake systems
AU - Matsushima, Toru
AU - Nishiwaki, Shinji
AU - Yamasaki, Shintarou
AU - Izui, Kazuhiro
AU - Yoshimura, Masataka
PY - 2008
Y1 - 2008
N2 - Minimizing brake squeal is one of the most important issues in the development of high performance braking systems. Recent advances in numerical analysis, such as finite element analysis, have enabled sophisticated analysis of brake squeal phenomena, but current design methods based on such numerical analyses still fall short in terms of providing concrete performance measures for minimizing brake squeal in high performance design drafts at the conceptual design phase. This paper proposes an optimal design method for disc brake systems that specifically aims to reduce brake squeal by appropriately modifying the shapes of the brake system components. First, the relationships between the occurrence of brake squeal and the geometry and characteristics of various components is clarified, using a simplified analysis model. Next, a new design performance measure is proposed for evaluating brake squeal performance and an optimization problem is then formulated using this performance measure as an objective function. The optimization problem is solved using Genetic Algorithms. Finally, a design example is presented to examine the features of the optimal solutions and confirm that the proposed method can yield useful design information for the development of high performance braking systems that minimize brake squeal.
AB - Minimizing brake squeal is one of the most important issues in the development of high performance braking systems. Recent advances in numerical analysis, such as finite element analysis, have enabled sophisticated analysis of brake squeal phenomena, but current design methods based on such numerical analyses still fall short in terms of providing concrete performance measures for minimizing brake squeal in high performance design drafts at the conceptual design phase. This paper proposes an optimal design method for disc brake systems that specifically aims to reduce brake squeal by appropriately modifying the shapes of the brake system components. First, the relationships between the occurrence of brake squeal and the geometry and characteristics of various components is clarified, using a simplified analysis model. Next, a new design performance measure is proposed for evaluating brake squeal performance and an optimization problem is then formulated using this performance measure as an objective function. The optimization problem is solved using Genetic Algorithms. Finally, a design example is presented to examine the features of the optimal solutions and confirm that the proposed method can yield useful design information for the development of high performance braking systems that minimize brake squeal.
UR - http://www.scopus.com/inward/record.url?scp=44949244989&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44949244989&partnerID=8YFLogxK
U2 - 10.1115/DETC2007-34708
DO - 10.1115/DETC2007-34708
M3 - Conference contribution
AN - SCOPUS:44949244989
SN - 0791848027
SN - 9780791848029
SN - 0791848078
SN - 9780791848074
T3 - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
SP - 895
EP - 902
BT - 2007 Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007
T2 - 33rd Design Automation Conference, presented at - 2007 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE2007
Y2 - 4 September 2007 through 7 September 2007
ER -