Analysis of NOx conversion using a quasi 2-D NH3-SCR model with detailed reactions

Jin Kusaka*, Hiroyuki Shimao, Hiroki Yano, Takanori Murasaki, Naotaka Koide, Hiroyasu Kawauchi, Yoshifumi Kato

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We have constructed a quasi-2 dimensional NH3-SCR model with detailed surface reactions to analyze the NOx conversion mechanism and reasons for its inhibition at low temperatures. The model consists of seven detailed surface reactions proposed by Grozzale et al., and calculates longitudinal gas flow, gas phase-catalyst phase mass transfer, and mass diffusion within the catalyst phase in the depth dimension. Using the model, we have analyzed the results of pulsed ammonia (NH3) feed tests at various catalyst temperatures, and results show that ammonium nitrate (NH4NO 3) is the inhibitor in NH3-SCR reactions at low temperatures. In addition, we found that cutting the supply of NH3 causes decomposition of NH4NO3, providing surface ammonia (NH4+), which rapidly reacts with adjacent NOx, leading to an instantaneous rise in nitrogen (N2) formation. However, the decomposition rate of NH4NO3 depends on the catalyst temperature, hence an optimum addition of reductants, depending on the NH 4NO3 formation/decomposition rate (and thus catalyst temperature) is required to maximize the NOx conversion efficiency of SCR catalysts.

Original languageEnglish
JournalSAE Technical Papers
Publication statusPublished - 2011 Jan 1

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Analysis of NOx conversion using a quasi 2-D NH3-SCR model with detailed reactions'. Together they form a unique fingerprint.

Cite this