Analytic smoothing effect for a system of Schrödinger equations with three wave interaction

Gaku Hoshino*, Tohru Ozawa

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

We consider the global Cauchy problem for a system of Schrödinger equations with quadratic interaction. Two types of analytic smoothing effect for the solutions are formulated in the small data setting under the mass resonance condition. One is the usual analytic smoothing effect in space variables in terms of the generator of Galilei transforms. We prove the existence and uniqueness of global solutions which are analytic with respect to Galilei generators for sufficiently small data with exponential decay at infinity in space ℝn with n ≥ 3. The other is analytic smoothing effect in space-time variables in terms of generator of pseudo-conformal and Galilei transforms. We prove the existence and uniqueness of global solutions which are analytic with respect to pseudo-conformal and Galilei generators for sufficiently small data with exponential decay in ℝ4. We also discuss the associated Lagrange structure.

Original languageEnglish
Article number091513
JournalJournal of Mathematical Physics
Volume56
Issue number9
DOIs
Publication statusPublished - 2015 Sept

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Analytic smoothing effect for a system of Schrödinger equations with three wave interaction'. Together they form a unique fingerprint.

Cite this