TY - JOUR
T1 - Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space
AU - Fujita, Yasuhiro
AU - Ishii, Hitoshi
AU - Loreti, Paola
PY - 2006
Y1 - 2006
N2 - We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + αx · Du + H(Du) = f(x) in ℝn × (0, ∞), where α is a positive constant and H is a convex function on ℝn, and establish a convergence result for the viscosity solution u(x, t) as t → ∞. Indiana University Mathematics Journal
AB - We study the asymptotic behavior of the viscosity solution of the Cauchy problem for the Hamilton-Jacobi equation ut + αx · Du + H(Du) = f(x) in ℝn × (0, ∞), where α is a positive constant and H is a convex function on ℝn, and establish a convergence result for the viscosity solution u(x, t) as t → ∞. Indiana University Mathematics Journal
KW - Asymptotic behavior
KW - Asymptotic solutions
KW - Hamilton-Jacobi equations
UR - http://www.scopus.com/inward/record.url?scp=33845535277&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845535277&partnerID=8YFLogxK
U2 - 10.1512/iumj.2006.55.2813
DO - 10.1512/iumj.2006.55.2813
M3 - Article
AN - SCOPUS:33845535277
SN - 0022-2518
VL - 55
SP - 1671
EP - 1700
JO - Indiana University Mathematics Journal
JF - Indiana University Mathematics Journal
IS - 5
ER -