Automatic diagnosis of melanoma using hyperspectral data and GoogLeNet

Ginji Hirano, Mitsutaka Nemoto, Yuichi Kimura, Yoshio Kiyohara, Hiroshi Koga, Naoya Yamazaki, Gustav Christensen, Christian Ingvar, Kari Nielsen, Atsushi Nakamura, Takayuki Sota, Takashi Nagaoka*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Background: Melanoma is a type of superficial tumor. As advanced melanoma has a poor prognosis, early detection and therapy are essential to reduce melanoma-related deaths. To that end, there is a need to develop a quantitative method for diagnosing melanoma. This paper reports the development of such a diagnostic system using hyperspectral data (HSD) and a convolutional neural network, which is a type of machine learning. Materials and Methods: HSD were acquired using a hyperspectral imager, which is a type of spectrometer that can simultaneously capture information about wavelength and position. GoogLeNet pre-trained with Imagenet was used to model the convolutional neural network. As many CNNs (including GoogLeNet) have three input channels, the HSD (involving 84 channels) could not be input directly. For that reason, a “Mini Network” layer was added to reduce the number of channels from 84 to 3 just before the GoogLeNet input layer. In total, 619 lesions (including 278 melanoma lesions and 341 non-melanoma lesions) were used for training and evaluation of the network. Results and Conclusion: The system was evaluated by 5-fold cross-validation, and the results indicate sensitivity, specificity, and accuracy of 69.1%, 75.7%, and 72.7% without data augmentation, 72.3%, 81.2%, and 77.2% with data augmentation, respectively. In future work, it is intended to improve the Mini Network and to increase the number of lesions.

Original languageEnglish
Pages (from-to)891-897
Number of pages7
JournalSkin Research and Technology
Volume26
Issue number6
DOIs
Publication statusPublished - 2020 Nov

Keywords

  • GoogLeNet
  • deep learning
  • hyperspectral imager
  • melanoma

ASJC Scopus subject areas

  • Dermatology

Fingerprint

Dive into the research topics of 'Automatic diagnosis of melanoma using hyperspectral data and GoogLeNet'. Together they form a unique fingerprint.

Cite this