AxIoU: An Axiomatically Justified Measure for Video Moment Retrieval

Riku Togashi, Mayu Otani, Yuta Nakashima, Esa Rahtu, Janne Heikkila, Tetsuya Sakai

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Evaluation measures have a crucial impact on the direction of research. Therefore, it is of utmost importance to develop appropriate and reliable evaluation measures for new applications where conventional measures are not well suited. Video Moment Retrieval (VMR) is one such application, and the current practice is to use R@K, θ for evaluating VMR systems. However, this measure has two disadvantages. First, it is rank-insensitive: It ignores the rank positions of successfully localised moments in the top-K ranked list by treating the list as a set. Second, it binarizes the Intersection over Union (IoU) of each retrieved video moment using the threshold θ and thereby ignoring fine-grained localisation quality of ranked moments. We propose an alternative measure for evaluating VMR, called Average Max IoU (AxIoU), which is free from the above two problems. We show that AxIoU satisfies two important axioms for VMR evaluation, namely, Invariance against Redundant Moments and Monotonicity with respect to the Best Moment, and also that R@ K, θ satisfies the first axiom only. We also empirically examine how Ax-IoU agrees with R@K, θ, as well as its stability with respect to change in the test data and human-annotated temporal boundaries.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages21044-21053
Number of pages10
ISBN (Electronic)9781665469463
DOIs
Publication statusPublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 2022 Jun 192022 Jun 24

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period22/6/1922/6/24

Keywords

  • Datasets and evaluation
  • Video analysis and understanding

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'AxIoU: An Axiomatically Justified Measure for Video Moment Retrieval'. Together they form a unique fingerprint.

Cite this