TY - JOUR
T1 - Bayesian decision making in human collectives with binary choices
AU - Eguíluz, Víctor M.
AU - Masuda, Naoki
AU - Fernández-Gracia, Juan
N1 - Publisher Copyright:
© 2015 Eguíluz et al.
PY - 2015/4/13
Y1 - 2015/4/13
N2 - Here we focus on the description of the mechanisms behind the process of information aggregation and decision making, a basic step to understand emergent phenomena in society, such as trends, information spreading or the wisdom of crowds. In many situations, agents choose between discrete options.We analyze experimental data on binary opinion choices in humans. The data consists of two separate experiments in which humans answer questions with a binary response, where one is correct and the other is incorrect. The questions are answered without and with information on the answers of some previous participants. We find that a Bayesian approach captures the probability of choosing one of the answers. The influence of peers is uncorrelated with the difficulty of the question. The data is inconsistent with Weber's law, which states that the probability of choosing an option depends on the proportion of previous answers choosing that option and not on the total number of those answers. Last, the present Bayesian model fits reasonably well to the data as compared to some other previously proposed functions although the latter sometime perform slightly better than the Bayesian model. The asset of the present model is the simplicity and mechanistic explanation of the behavior.
AB - Here we focus on the description of the mechanisms behind the process of information aggregation and decision making, a basic step to understand emergent phenomena in society, such as trends, information spreading or the wisdom of crowds. In many situations, agents choose between discrete options.We analyze experimental data on binary opinion choices in humans. The data consists of two separate experiments in which humans answer questions with a binary response, where one is correct and the other is incorrect. The questions are answered without and with information on the answers of some previous participants. We find that a Bayesian approach captures the probability of choosing one of the answers. The influence of peers is uncorrelated with the difficulty of the question. The data is inconsistent with Weber's law, which states that the probability of choosing an option depends on the proportion of previous answers choosing that option and not on the total number of those answers. Last, the present Bayesian model fits reasonably well to the data as compared to some other previously proposed functions although the latter sometime perform slightly better than the Bayesian model. The asset of the present model is the simplicity and mechanistic explanation of the behavior.
UR - http://www.scopus.com/inward/record.url?scp=84929497891&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929497891&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0121332
DO - 10.1371/journal.pone.0121332
M3 - Article
C2 - 25867176
AN - SCOPUS:84929497891
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 4
M1 - e0121332
ER -