Bayesian Estimation of Model Parameters of Equivalent Circuit Model for Detecting Degradation Parts of Lithium-Ion Battery

Tamon Miyake*, Tomoyuki Suzuki, Satoshi Funabashi, Namiko Saito, Mitsuhiro Kamezaki, Takahiro Shoda, Tsutomu Saigo, Shigeki Sugano

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Nowadays, the use of electric vehicles is increasing leading to a growing demand for more efficient use of lithium-ion batteries. The state-of-charge (SOC) has been estimated in previous studies to optimize energy management of batteries. For more efficient battery utilization, detecting degradation is important. However, it is difficult for conventional methods to distinguish the effect of the model parameters including different time constants. Identifying model parameters of multiple RC parallel branches, which represent the impedance of wider frequency ranges, is a necessary requirement to detect the degradation of parts. In this study, we present a method for estimating the model parameters of multiple RC parallel branches. We designed the Markov Chain Monte Carlo algorithm by setting a search range limit and moving window, which enable estimation of the model parameters of parallel branches of different time constants. Through validation of the algorithm based on simulation, the model parameters of a third-order circuit were estimated to be within the error range of 15.2 %. In addition, impedance was calculated from the estimated model parameters in the test using a real battery dataset. The error of impedance was less than 10 % from 0.01 to 100 Hz which was sufficiently low to monitor the change of the parameters owing to degradation. As the impedance in the high-frequency band above 0.1 Hz is more likely to change because of degradation, the proposed method can be used to monitor the model parameters that change as a result of degradation.

Original languageEnglish
Pages (from-to)159699-159713
Number of pages15
JournalIEEE Access
Publication statusPublished - 2021


  • Battery management systems
  • Bayes methods
  • detection of battery degradation parts
  • equivalent circuit model

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering


Dive into the research topics of 'Bayesian Estimation of Model Parameters of Equivalent Circuit Model for Detecting Degradation Parts of Lithium-Ion Battery'. Together they form a unique fingerprint.

Cite this