TY - JOUR
T1 - BGaN micro-islands as novel buffers for growth of high-quality GaN on sapphire
AU - Akasaka, Tetsuya
AU - Kobayashi, Yasuyuki
AU - Makimoto, Toshiki
N1 - Funding Information:
This work was partly supported by a Grant-in-Aid for scientific Research (A) #18206004 from the Japan Society for the Promotion of Science. The authors thank Dr. K. Torimitsu and Dr. J. Yumoto for encouragement throughout this work.
PY - 2007/1
Y1 - 2007/1
N2 - We discuss the growth mechanism of GaN films and report very high two-dimensional electron gas (2DEG) mobility in AlGaN/AlN/GaN heterostructures fabricated on sapphire using BGaN micro-islands as novel buffers by metalorganic vapor phase epitaxy. The three-dimensional growth of BGaN (formation of BGaN micro-islands) occurs due to the phase separation of BGaN. However, the surface of the overgrown GaN on the BGaN micro-islands becomes smooth and continuous through the epitaxial lateral overgrowth process. The threading dislocations (TDs) in GaN consist mainly of pure edge-type ones and are effectively annihilated using single and double layers of BGaN micro-islands from 2×1010 to 2×109 and 2×108 cm-2, respectively. An n-type GaN film shallowly doped with Si exhibits an electron concentration and high Hall mobility of 3.0×1016 cm-3 and 669 cm2/Vs at room temperature (RT). Very high Hall 2DEG mobility in an Al0.10Ga0.90N/AlN/GaN heterostructure is obtained: 1910 and 20,600 cm2/Vs at RT and 77 K, respectively. The sheet carrier density had almost constant values of 6.9-5.7×1012 cm-2 in the temperature range from 77 to 500 K, indicating that the parallel conduction due to the residual electrons in the GaN underlying layer was negligible.
AB - We discuss the growth mechanism of GaN films and report very high two-dimensional electron gas (2DEG) mobility in AlGaN/AlN/GaN heterostructures fabricated on sapphire using BGaN micro-islands as novel buffers by metalorganic vapor phase epitaxy. The three-dimensional growth of BGaN (formation of BGaN micro-islands) occurs due to the phase separation of BGaN. However, the surface of the overgrown GaN on the BGaN micro-islands becomes smooth and continuous through the epitaxial lateral overgrowth process. The threading dislocations (TDs) in GaN consist mainly of pure edge-type ones and are effectively annihilated using single and double layers of BGaN micro-islands from 2×1010 to 2×109 and 2×108 cm-2, respectively. An n-type GaN film shallowly doped with Si exhibits an electron concentration and high Hall mobility of 3.0×1016 cm-3 and 669 cm2/Vs at room temperature (RT). Very high Hall 2DEG mobility in an Al0.10Ga0.90N/AlN/GaN heterostructure is obtained: 1910 and 20,600 cm2/Vs at RT and 77 K, respectively. The sheet carrier density had almost constant values of 6.9-5.7×1012 cm-2 in the temperature range from 77 to 500 K, indicating that the parallel conduction due to the residual electrons in the GaN underlying layer was negligible.
KW - A3. Low-pressure metalorganic vapor phase epitaxy
KW - B1. Nitrides
KW - B2. Semiconducting III-V materials
UR - http://www.scopus.com/inward/record.url?scp=33846465024&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846465024&partnerID=8YFLogxK
U2 - 10.1016/j.jcrysgro.2006.10.033
DO - 10.1016/j.jcrysgro.2006.10.033
M3 - Article
AN - SCOPUS:33846465024
SN - 0022-0248
VL - 298
SP - 320
EP - 324
JO - Journal of Crystal Growth
JF - Journal of Crystal Growth
IS - SPEC. ISS
ER -