Biomolecule-Assisted Synthesis of Hierarchical Multilayered Boehmite and Alumina Nanosheets for Enhanced Molybdenum Adsorption

Indra Saptiama, Yusuf Valentino Kaneti*, Brian Yuliarto, Hiroaki Kumada, Kunihiko Tsuchiya, Yoshitaka Fujita, Victor Malgras, Nobuyoshi Fukumitsu, Takeji Sakae, Kentaro Hatano, Katsuhiko Ariga, Yoshiyuki Sugahara, Yusuke Yamauchi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The effective utilization of various biomolecules for creating a series of mesoporous boehmite (γ-AlOOH) and gamma-alumina (γ-Al 2 O 3 ) nanosheets with unique hierarchical multilayered structures is demonstrated. The nature and concentration of the biomolecules strongly influence the degree of the crystallinity, the morphology, and the textural properties of the resulting γ-AlOOH and γ-Al 2 O 3 nanosheets, allowing for easy tuning. The hierarchical γ-AlOOH and γ-Al 2 O 3 multilayered nanosheets synthesized by using biomolecules exhibit enhanced crystallinity, improved particle separation, and well-defined multilayered structures compared to those obtained without biomolecules. More impressively, these γ-AlOOH and γ-Al 2 O 3 nanosheets possess high surface areas up to 425 and 371 m 2 g −1 , respectively, due to their mesoporous nature and hierarchical multilayered structure. When employed for molybdenum adsorption toward medical radioisotope production, the hierarchical γ-Al 2 O 3 multilayered nanosheets exhibit Mo adsorption capacities of 33.1–40.8 mg g −1 . The Mo adsorption performance of these materials is influenced by the synergistic combination of the crystallinity, the surface area, and the pore volume. It is expected that the proposed biomolecule-assisted strategy may be expanded for the creation of other 3D mesoporous oxides in the future.

Original languageEnglish
Pages (from-to)4843-4855
Number of pages13
JournalChemistry - A European Journal
Volume25
Issue number18
DOIs
Publication statusPublished - 2019 Mar 27

Keywords

  • adsorption
  • alumina
  • mesoporous materials
  • metal oxides
  • nanostructures

ASJC Scopus subject areas

  • Chemistry(all)
  • Catalysis
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Biomolecule-Assisted Synthesis of Hierarchical Multilayered Boehmite and Alumina Nanosheets for Enhanced Molybdenum Adsorption'. Together they form a unique fingerprint.

Cite this