Bridging Optical and Far-infrared Emission-line Diagrams of Galaxies from Local to the Epoch of Reionization: Characteristic High [O iii] 88 μm/SFR at z > 6

Yuma Sugahara*, Akio K. Inoue, Yoshinobu Fudamoto, Takuya Hashimoto, Yuichi Harikane, Satoshi Yamanaka

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

We present photoionization modeling of galaxy populations at z ∼0, 2, and >6 to bridge optical and far-infrared (FIR) emission-line diagrams. We collect galaxies with measurements of optical and/or FIR ([O iii] 88 μm and [C ii] 158 μm) emission-line fluxes and plot them on the [O iii ]λ5007/Hβ-[N ii ]λ6585/Hα (BPT) and L([O iii]88)/SFR-L([C ii ]158)/SFR diagrams, where SFR is the star formation rate and L([O iii ]88) and L([C ii ]158) are the FIR line luminosities. We aim to explain the galaxy distributions on the two diagrams with photoionization models that employ three nebular parameters: the ionization parameter U, hydrogen density n H, and gaseous metallicity Z gas. Our models successfully reproduce the nebular parameters of local galaxies, and then predict the distributions of the z ∼0, 2, and >6 galaxies in the diagrams. The predicted distributions illustrate the redshift evolution on all the diagrams; e.g., [O iii ]/Hβ and [O iii ]88/[C ii]158 ratios continuously decrease from z > 6 to 0. Specifically, the z > 6 galaxies exhibit ∼0.5 dex higher U than low-redshift galaxies at a given Z gas and show predicted flat distributions on the BPT diagram at log[OIII]/Hβ= 0.5-0.8. We find that some of the z > 6 galaxies exhibit high L([O iii]88)/SFR ratios. To explain these high ratios, our photoionization models require a low stellar-to-gaseous-metallicity ratio or bursty/increasing star formation history at z > 6. JWST will test the predictions and scenarios for the z > 6 galaxies proposed by our photoionization modeling.

Original languageEnglish
Article number119
JournalAstrophysical Journal
Volume935
Issue number2
DOIs
Publication statusPublished - 2022 Aug 1

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Bridging Optical and Far-infrared Emission-line Diagrams of Galaxies from Local to the Epoch of Reionization: Characteristic High [O iii] 88 μm/SFR at z > 6'. Together they form a unique fingerprint.

Cite this