TY - JOUR
T1 - Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite
AU - Fagan, Timothy J.
AU - Kashima, Daiju
AU - Wakabayashi, Yuki
AU - Suginohara, Akiko
N1 - Funding Information:
Financial support for this work was provided by Monbukagakusho Grant-in-Aid of Scientific Research No. 18540483 and Waseda University research funds . We thank A. Yonemochi and H. Miura for assistance with electron microprobe analyses. We are grateful for loans of thin sections from M. Killgore for NWA 773 and from NASA/JSC (G.E. Lofgren and R.A. Zeigler, curators) for Apollo 15405 QMD. Waseda University undergraduate research projects conducted by A. Sasamoto, Y. Kataoka, S. Kodama and S. Hayakawa contributed to this research. T.J.F. would like to dedicate this work to the memory of A.M. Fagan, whose first-grade classes in Bow, New Hampshire always seemed to have at least one kid with a rock collection. Parts of this work have been presented at meetings, where we have benefited from discussions with T. Mikouchi, C. R. Neal and E. B. Watson among many others. Three careful and insightful reviews by Brad Jolliff, Katherine Joy and Jeff Taylor, and editorial guidance of Alexander Nemchin and Marc Norman led to a major re-organization of the originally submitted work and substantially improved the presentation and scientific content of the manuscript. This research has made use of NASA’s Astrophysics Data System and the lunar meteorites web-site maintained by R.L. Korotev of Washington University of St. Louis.
PY - 2014/5/15
Y1 - 2014/5/15
N2 - Pyroxene and feldspar compositions indicate that most clasts from the Northwest Africa 773 (NWA 773) lunar meteorite breccia crystallized from a common very low-Ti (VLT) mare basalt parental magma on the Moon. An olivine cumulate (OC), with low-Ca and high-Ca pyroxenes and plagioclase feldspar formed during early stages of crystallization, followed by pyroxene gabbro, which is characterized by zoned pyroxene (Fe#=molar Fe/(Fe+Mg)×100 from ~35 to 90; Ti#=molar Ti/(Ti+Cr)×100 from ~20 to 99) and feldspar (~An90-95Ab05-10 to An80-85Ab10-16). Late stage lithologies include alkali-poor symplectite consisting of fayalite, hedenbergitic pyroxene and silica, and alkaline-phase-ferroan clasts characterized by K-rich glass and/or K,Ba-feldspar with fayalite and/or pyroxene. Igneous silica only occurs with the alkaline-phase-ferroan clasts. This sequence of clasts represents stages of magmatic evolution along a ferroan-titanian trend characterized by correlated Fe# and Ti# in pyroxene, and a wide range of increase in Fe# and Ti# prior to crystallization of igneous silica.Clasts of Apollo 15 quartz monzodiorite (QMD) also have pyroxene co-existing with silica, but the QMD pyroxene has more moderate Fe# (~70). Thus, in AFM components (A=Na2O+K2O, M=MgO, F=FeO), the QMD clasts are similar to the terrestrial calc-alkaline trend (silica-enrichment at moderate Fe#), whereas the ferroan-titanian trend is similar to the terrestrial tholeiitic trend (silica-enrichment only after strong increase in Fe#). However, the variations in SiO2-contents of QMD clasts are due to variable mixing of SiO2-rich and FeO-rich immiscible liquids (i.e., not a progressive increase in SiO2). Immiscibility occurred after fractionation of a KREEP-rich parent liquid.A third trend is based on zoning relations within the NWA 773 OC, where pyroxene Ti# increases at constant Fe# with proximity to intercumulus, incompatible element-rich pockets rich in K,Ba-feldspar and Ca-phosphates. This type of fractionation (increasing refractory trace elements at constant Fe#) in a cumulate parent rock may have been important for generating lunar rocks that combine low Fe# with high incompatible trace element concentrations, such as KREEP basalts and the magnesian suite.MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) models of one VLT, one low-Ti and two high-Ti mare basalts and one KREEP basalt all show evolution from low to high Fe# residual liquids during fractional crystallization; however strong enrichments in FeO-concentrations are limited to the VLT and low-Ti liquids. In the high-Ti liquids, crystallization of Fe-Ti-oxides prevents enrichment in FeO, and the increases in Fe# are due to depletion of MgO. Fe-Ti-oxide fractionation results in steady silica-enrichment in the high-Ti mare compositions. Intervals of FeO-enrichment on the VLT and low-Ti mare liquid lines of descent are linked to shifts from olivine to pyroxene crystallization. The onset of plagioclase feldspar crystallization limits the depletion of FeO during crystallization of one high-Ti mare basalt and of the KREEP basalt composition modeled.
AB - Pyroxene and feldspar compositions indicate that most clasts from the Northwest Africa 773 (NWA 773) lunar meteorite breccia crystallized from a common very low-Ti (VLT) mare basalt parental magma on the Moon. An olivine cumulate (OC), with low-Ca and high-Ca pyroxenes and plagioclase feldspar formed during early stages of crystallization, followed by pyroxene gabbro, which is characterized by zoned pyroxene (Fe#=molar Fe/(Fe+Mg)×100 from ~35 to 90; Ti#=molar Ti/(Ti+Cr)×100 from ~20 to 99) and feldspar (~An90-95Ab05-10 to An80-85Ab10-16). Late stage lithologies include alkali-poor symplectite consisting of fayalite, hedenbergitic pyroxene and silica, and alkaline-phase-ferroan clasts characterized by K-rich glass and/or K,Ba-feldspar with fayalite and/or pyroxene. Igneous silica only occurs with the alkaline-phase-ferroan clasts. This sequence of clasts represents stages of magmatic evolution along a ferroan-titanian trend characterized by correlated Fe# and Ti# in pyroxene, and a wide range of increase in Fe# and Ti# prior to crystallization of igneous silica.Clasts of Apollo 15 quartz monzodiorite (QMD) also have pyroxene co-existing with silica, but the QMD pyroxene has more moderate Fe# (~70). Thus, in AFM components (A=Na2O+K2O, M=MgO, F=FeO), the QMD clasts are similar to the terrestrial calc-alkaline trend (silica-enrichment at moderate Fe#), whereas the ferroan-titanian trend is similar to the terrestrial tholeiitic trend (silica-enrichment only after strong increase in Fe#). However, the variations in SiO2-contents of QMD clasts are due to variable mixing of SiO2-rich and FeO-rich immiscible liquids (i.e., not a progressive increase in SiO2). Immiscibility occurred after fractionation of a KREEP-rich parent liquid.A third trend is based on zoning relations within the NWA 773 OC, where pyroxene Ti# increases at constant Fe# with proximity to intercumulus, incompatible element-rich pockets rich in K,Ba-feldspar and Ca-phosphates. This type of fractionation (increasing refractory trace elements at constant Fe#) in a cumulate parent rock may have been important for generating lunar rocks that combine low Fe# with high incompatible trace element concentrations, such as KREEP basalts and the magnesian suite.MELTS (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) models of one VLT, one low-Ti and two high-Ti mare basalts and one KREEP basalt all show evolution from low to high Fe# residual liquids during fractional crystallization; however strong enrichments in FeO-concentrations are limited to the VLT and low-Ti liquids. In the high-Ti liquids, crystallization of Fe-Ti-oxides prevents enrichment in FeO, and the increases in Fe# are due to depletion of MgO. Fe-Ti-oxide fractionation results in steady silica-enrichment in the high-Ti mare compositions. Intervals of FeO-enrichment on the VLT and low-Ti mare liquid lines of descent are linked to shifts from olivine to pyroxene crystallization. The onset of plagioclase feldspar crystallization limits the depletion of FeO during crystallization of one high-Ti mare basalt and of the KREEP basalt composition modeled.
UR - http://www.scopus.com/inward/record.url?scp=84897887100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897887100&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2014.02.025
DO - 10.1016/j.gca.2014.02.025
M3 - Article
AN - SCOPUS:84897887100
SN - 0016-7037
VL - 133
SP - 97
EP - 127
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
ER -