TY - JOUR
T1 - Characterization of CD90/Thy-1 as a crucial molecular signature for myogenic differentiation in human urine-derived cells through single-cell RNA sequencing
AU - Kunitake, Katsuhiko
AU - Motohashi, Norio
AU - Inoue, Takafumi
AU - Suzuki, Yutaka
AU - Aoki, Yoshitsugu
N1 - Publisher Copyright:
© 2024, The Author(s).
PY - 2024/12
Y1 - 2024/12
N2 - Human urine-derived cells (UDCs) are primary cultured cells originating from the upper urinary tract and are known to be multipotent. We previously developed MYOD1-transduced UDCs (MYOD1-UDCs) as a model recapitulating the pathogenesis of Duchenne muscular dystrophy (DMD) caused by a lack of dystrophin. MYOD1-UDCs also allow evaluation of the efficacy of exon skipping with antisense oligonucleotides. However, despite the introduction of MYOD1, some MYOD1-UDCs failed to form myotubes, possibly because of heterogeneity among UDCs. Here, we carried out single-cell RNA-sequencing analyses and revealed that CD90/Thy-1 was highly expressed in a limited subpopulation of UDCs with high myogenic potency. Furthermore, CD90-positive MYOD1-UDCs, but not CD90-negative cells, could form myotubes expressing high levels of myosin heavy chain and dystrophin. Notably, overexpression of CD90 in CD90-negative MYOD1-UDCs did not enhance myogenic differentiation, whereas CD90 suppression in CD90-positive UDCs led to decreased myotube formation and decreased myosin heavy chain expression. CD90 may thus contribute to the fusion of single-nucleated MYOD1-UDCs into myotubes but is not crucial for promoting the expression of late muscle regulatory factors. Finally, we confirmed that CD90-positive MYOD1-UDCs derived from patients with DMD were a valuable tool for obtaining a highly reproducible and stable evaluation of exon skipping using antisense oligonucleotide.
AB - Human urine-derived cells (UDCs) are primary cultured cells originating from the upper urinary tract and are known to be multipotent. We previously developed MYOD1-transduced UDCs (MYOD1-UDCs) as a model recapitulating the pathogenesis of Duchenne muscular dystrophy (DMD) caused by a lack of dystrophin. MYOD1-UDCs also allow evaluation of the efficacy of exon skipping with antisense oligonucleotides. However, despite the introduction of MYOD1, some MYOD1-UDCs failed to form myotubes, possibly because of heterogeneity among UDCs. Here, we carried out single-cell RNA-sequencing analyses and revealed that CD90/Thy-1 was highly expressed in a limited subpopulation of UDCs with high myogenic potency. Furthermore, CD90-positive MYOD1-UDCs, but not CD90-negative cells, could form myotubes expressing high levels of myosin heavy chain and dystrophin. Notably, overexpression of CD90 in CD90-negative MYOD1-UDCs did not enhance myogenic differentiation, whereas CD90 suppression in CD90-positive UDCs led to decreased myotube formation and decreased myosin heavy chain expression. CD90 may thus contribute to the fusion of single-nucleated MYOD1-UDCs into myotubes but is not crucial for promoting the expression of late muscle regulatory factors. Finally, we confirmed that CD90-positive MYOD1-UDCs derived from patients with DMD were a valuable tool for obtaining a highly reproducible and stable evaluation of exon skipping using antisense oligonucleotide.
UR - http://www.scopus.com/inward/record.url?scp=85183342779&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85183342779&partnerID=8YFLogxK
U2 - 10.1038/s41598-024-52530-5
DO - 10.1038/s41598-024-52530-5
M3 - Article
C2 - 38282008
AN - SCOPUS:85183342779
SN - 2045-2322
VL - 14
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 2329
ER -