Abstract
In this study, intermetallic TiFe nanostructures were chemically prepared from Ti-Fe oxide precursors using a CaH2reducing agent in molten LiCl at as low as 600 °C. The used precursor was spherical oxide nanoparticles or commercial FeTiO3bulk powder. After the reduction treatment, the former precursor was changed to an aggregation of TiFe nanoparticles with a particle size of 44-46 nm. Surprisingly, the latter precursor was reduced to a layered morphology composed of TiFe nanoparticles with a particle size of 47-65 nm. An intermetallic compound with a unique layered morphology was found for the first time, and the layered morphology could have originated from the morphology of the FeTiO3precursor in which the Fe2+and Ti4+ions occupied alternating layers perpendicular to the trigonalc-axis. The precursor originated morphology was enabled by the proposed low reduction temperature method, and the environment-friendliness of the proposed method was finally evaluated using life-cycle assessment (LCA).
Original language | English |
---|---|
Pages (from-to) | 5284-5291 |
Number of pages | 8 |
Journal | Nanoscale Advances |
Volume | 3 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2021 Sept 21 |
ASJC Scopus subject areas
- Bioengineering
- Chemistry(all)
- Atomic and Molecular Physics, and Optics
- Materials Science(all)
- Engineering(all)