Chemical synthesis of unique intermetallic TiFe nanostructures originating from the morphology of oxide precursors

Yasukazu Kobayashi*, Heng Yi Teah, Nobuko Hanada

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

In this study, intermetallic TiFe nanostructures were chemically prepared from Ti-Fe oxide precursors using a CaH2reducing agent in molten LiCl at as low as 600 °C. The used precursor was spherical oxide nanoparticles or commercial FeTiO3bulk powder. After the reduction treatment, the former precursor was changed to an aggregation of TiFe nanoparticles with a particle size of 44-46 nm. Surprisingly, the latter precursor was reduced to a layered morphology composed of TiFe nanoparticles with a particle size of 47-65 nm. An intermetallic compound with a unique layered morphology was found for the first time, and the layered morphology could have originated from the morphology of the FeTiO3precursor in which the Fe2+and Ti4+ions occupied alternating layers perpendicular to the trigonalc-axis. The precursor originated morphology was enabled by the proposed low reduction temperature method, and the environment-friendliness of the proposed method was finally evaluated using life-cycle assessment (LCA).

Original languageEnglish
Pages (from-to)5284-5291
Number of pages8
JournalNanoscale Advances
Volume3
Issue number18
DOIs
Publication statusPublished - 2021 Sept 21

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Engineering(all)

Fingerprint

Dive into the research topics of 'Chemical synthesis of unique intermetallic TiFe nanostructures originating from the morphology of oxide precursors'. Together they form a unique fingerprint.

Cite this