Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies

Yoshiaki Maeda, Hironori Dobashi, Yui Sugiyama, Tatsuya Saeki, Tae Kyu Lim, Manabu Harada, Tadashi Matsunaga, Tomoko Yoshino, Tsuyoshi Tanaka

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Detection and identification of microbial species are crucial in a wide range of industries, including production of beverages, foods, cosmetics, and pharmaceuticals. Traditionally, colony formation and its morphological analysis (e.g., size, shape, and color) with a naked eye have been employed for this purpose. However, such a conventional method is time consuming, labor intensive, and not very reproducible. To overcome these problems, we propose a novel method that detects microcolonies (diameter 10-500 μm) using a lensless imaging system. When comparing colony images of five microorganisms from different genera (Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans), the images showed obvious different features. Being closely related species, St. aureus and St. epidermidis resembled each other, but the imaging analysis could extract substantial information (colony fingerprints) including the morphological and physiological features, and linear discriminant analysis of the colony fingerprints distinguished these two species with 100% of accuracy. Because this system may offer many advantages such as high-throughput testing, lower costs, more compact equipment, and ease of automation, it holds promise for microbial detection and identification in various academic and industrial areas.

Original languageEnglish
Article numbere0174723
JournalPLoS One
Volume12
Issue number4
DOIs
Publication statusPublished - 2017 Mar 1
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Fingerprint

Dive into the research topics of 'Colony fingerprint for discrimination of microbial species based on lensless imaging of microcolonies'. Together they form a unique fingerprint.

Cite this