Common Acoustical Pole and Zero Modeling of Room Transfer Functions

Yoichi Haneda, Shoji Makino, Yutaka Kaneda

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)


A new model for a room transfer function (RTF) by using common acoustical poles that correspond to resonance properties of a room is proposed. These poles are estimated as the common values of many RTF's corresponding to different source and receiver positions. Since there is one-to-one correspondence between poles and AR coefficients, these poles are calculated as common AR coefficients by two methods: i) using the least squares method, assuming all the given multiple RTF's have the same AR coefficients and ii) averaging each set of AR coefficients estimated from each RTF. The estimated poles agree well with the theoretical poles when estimated with the same order as the theoretical pole order. When estimated with a lower order than the theoretical pole order, the estimated poles correspond to the major resonance frequencies, which have high Q factors. Using the estimated common AR coefficients, the proposed method models the RTF's with different MA coefficients. This model is called the common-acoustical-pole and zero (CAPZ) model, and it requires far fewer variable parameters to represent RTF's than the conventional all-zero or pole/zero model. This model was used for an acoustic echo canceller at low frequencies, as one example. The acoustic echo canceller based on the proposed model requires half the variable parameters and converges 1.5 times faster than one based on the all-zero model, confirming the efficiency of the proposed model.

Original languageEnglish
Pages (from-to)320-328
Number of pages9
JournalIEEE Transactions on Speech and Audio Processing
Issue number2
Publication statusPublished - 1994 Apr
Externally publishedYes

ASJC Scopus subject areas

  • Software
  • Acoustics and Ultrasonics
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering


Dive into the research topics of 'Common Acoustical Pole and Zero Modeling of Room Transfer Functions'. Together they form a unique fingerprint.

Cite this