Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG) in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2). Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.
Original language | English |
---|---|
Article number | 703632 |
Journal | Journal of Nanomaterials |
Volume | 2015 |
DOIs | |
Publication status | Published - 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- Materials Science(all)