Computations and Experiments of Single-Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets, Single Piston and Rotary Valve

Kan Yamagishi, Yuichi Onuma, Soichi Ohara, Kenya Hasegawa, Kentaro Kojima, Tomoya Shirai, Takahiro Kihara, Kota Tsuru, Ken Naitoh*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

12 Citations (Scopus)

Abstract

A new engine concept (Fugine) based on colliding pulsed supermulti-jets was proposed in recent years, which is expected to provide high thermal efficiencies over 50% and less combustion noise. Theoretical analyses indicate a high potential for thermal efficiency over 60%. Three types of prototype engines have been developed. The first prototype engine based only on the colliding of pulsed supermulti-jets with fourteen nozzles has no piston compression, while the second type equipped with a low-cost gasoline injector in the suction port has a double piston system and eight jet nozzles. Combustion experiments conducted on the second prototype gasoline engine show high thermal efficiency similar to that of traditional diesel engines and lower combustion noise comparable to that of traditional spark-ignition gasoline engines. This paper presents the third prototype engine: a single-piston engine having a rotary valve, which induces strong point compression produced by twenty-four pulsed multi-jets injected from suction nozzles. Negative pressure generated by expansion due to piston motion under a closed rotary valve condition results in strong jets going to the cylinder center. This third engine has no compression due to piston motion. Unsteady three-dimensional computations for this engine including spray calculations of liquid gasoline, subsonic and supersonic turbulent flows, and combustion phenomena show the potential for very high combustion efficiency over 95%. Based on the result, combustion experiments of the engine were started. The colliding of the pulsed supermulti-jets causes combustion to occur.

Original languageEnglish
JournalSAE Technical Papers
Volume2016-Octobeer
DOIs
Publication statusPublished - 2016
EventSAE International Powertrains, Fuels and Lubricants Meeting, FFL 2016 - Baltimore, United States
Duration: 2016 Oct 242016 Oct 26

ASJC Scopus subject areas

  • Automotive Engineering
  • Safety, Risk, Reliability and Quality
  • Pollution
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Computations and Experiments of Single-Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets, Single Piston and Rotary Valve'. Together they form a unique fingerprint.

Cite this