Continuous speech separation using speaker inventory for long recording

Cong Han, Yi Luo, Chenda Li, Tianyan Zhou, Keisuke Kinoshita, Shinji Watanabe, Marc Delcroix, Hakan Erdogan, John R. Hershey, Nima Mesgarani, Zhuo Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Leveraging additional speaker information to facilitate speech separation has received increasing attention in recent years. Recent research includes extracting target speech by using the target speaker’s voice snippet and jointly separating all participating speakers by using a pool of additional speaker signals, which is known as speech separation using speaker inventory (SSUSI). However, all these systems ideally assume that the pre-enrolled speaker signals are available and are only evaluated on simple data configurations. In realistic multi-talker conversations, the speech signal contains a large proportion of non-overlapped regions, where we can derive robust speaker embedding of individual talkers. In this work, we adopt the SSUSI model in long recordings and propose a self-informed, clustering-based inventory forming scheme for long recording, where the speaker inventory is fully built from the input signal without the need for external speaker signals. Experiment results on simulated noisy reverberant long recording datasets show that the proposed method can significantly improve the separation performance across various conditions.

Original languageEnglish
Title of host publication22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
PublisherInternational Speech Communication Association
Pages2273-2277
Number of pages5
ISBN (Electronic)9781713836902
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 - Brno, Czech Republic
Duration: 2021 Aug 302021 Sept 3

Publication series

NameProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Volume3
ISSN (Print)2308-457X
ISSN (Electronic)1990-9772

Conference

Conference22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
Country/TerritoryCzech Republic
CityBrno
Period21/8/3021/9/3

Keywords

  • Continuous speech separation
  • Embedding clustering
  • Speaker inventory
  • speech separation

ASJC Scopus subject areas

  • Language and Linguistics
  • Human-Computer Interaction
  • Signal Processing
  • Software
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'Continuous speech separation using speaker inventory for long recording'. Together they form a unique fingerprint.

Cite this