TY - JOUR
T1 - Correction to
T2 - Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension (Mathematische Annalen, (2018), 371, 1-2, (707-740), 10.1007/s00208-018-1666-z)
AU - Bellazzini, Jacopo
AU - Georgiev, Vladimir
AU - Visciglia, Nicola
N1 - Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2020/4/1
Y1 - 2020/4/1
N2 - The assumptions of Theorem 1.2 are not correct in case n = 1. In dimension n = 1, instead of 1+ 2 n ˂ p ˂ 1+ 2 n-1 it is correct 3 ˂ p ˂ 5. Indeed the scaling argument in Proposition 3.1 works only if 3 ˂ p ˂ 5. The correct Theorem is now the following: Theorem 1.2 Let 3 ˂ p ˂ 5 if n = 1 and 1+ 2 n ˂ p ˂ 1+ 2 n-1 if n = 2. There exists r0 ˃ 0 such that the following conditions occur for every r ? (0, r0): • Jr ˃ -8, Br = Ø and Br ? B1/2 n H1(Rn), where Br := {v ? Sr n B1 s.t. Es(v) = Jr }. In particular for every v ? Br there exists ? ? R such that v 1 - v + ?v - v|v|p-1 = 0;.
AB - The assumptions of Theorem 1.2 are not correct in case n = 1. In dimension n = 1, instead of 1+ 2 n ˂ p ˂ 1+ 2 n-1 it is correct 3 ˂ p ˂ 5. Indeed the scaling argument in Proposition 3.1 works only if 3 ˂ p ˂ 5. The correct Theorem is now the following: Theorem 1.2 Let 3 ˂ p ˂ 5 if n = 1 and 1+ 2 n ˂ p ˂ 1+ 2 n-1 if n = 2. There exists r0 ˃ 0 such that the following conditions occur for every r ? (0, r0): • Jr ˃ -8, Br = Ø and Br ? B1/2 n H1(Rn), where Br := {v ? Sr n B1 s.t. Es(v) = Jr }. In particular for every v ? Br there exists ? ? R such that v 1 - v + ?v - v|v|p-1 = 0;.
UR - http://www.scopus.com/inward/record.url?scp=85081733172&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85081733172&partnerID=8YFLogxK
U2 - 10.1007/s00208-020-01972-z
DO - 10.1007/s00208-020-01972-z
M3 - Comment/debate
AN - SCOPUS:85081733172
SN - 0025-5831
VL - 376
SP - 1795
EP - 1796
JO - Mathematische Annalen
JF - Mathematische Annalen
IS - 3-4
ER -