Cross-linked protein complex exhibiting asymmetric oxidation activities in the absence of added cofactor

Hiroyuki Nagaoka*, Keisuke Udagawa, Kohtaro Kirimura

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

A protein complex (PC) suspension exhibits asymmetric biooxidation activities in the absence of any added cofactor such as NAD(P)+ or FAD. It can be extracted from pea protein (PP)-gel (PP encapsulated with Ca2+ alginate gel and aerated in air for several hours) using hot water by rotary shaking and powdered by the following three steps: (1) forming precipitates from the suspension using 30% (w/v) aqueous (NH4)2SO4, (2) crosslinking the precipitates with 0.25% (v/v) GA, and (3) preparing the cross-linked powder by freeze-drying. The cross-linked PC (CLPC) performed asymmetric oxidation of the toward (R)-isomers of rac-1 and rac-2 in 50 mM glycine-NaOH (pH 9.0) buffer/DMSO cosolvent [2.07% (v/v)] with high enantioselectivity; thus, the (S)-isomers can be obtained in greater than 99% ee from the corresponding rac-p-substituted naphthyl methyl carbinol (rac-1 and rac-2). The CLPC activity was not only competitively inhibited by addition of either 1.0 mM ZnCl2 or a chelating agent such as 1.0 mM EDTA but also denatured by pretreatments: autoclaving at 121°C (20 min) or using 6.0 M guanidine-HCl containing 50 mM DTT. These results indicated that the PC catalytic process may utilize an electron transfer system incorporating a redox cation (e.g., Fe2+ ⇄ Fe3+ or Zn). Therefore, the newly introduced CLPC can asymmetrically oxidize the substrates without the addition of any cofactor resulting in a low-cost organic method. Overall, our results show that the CLPC is an easily prepared, low-cost reagent that can function under mild conditions and afford stereoselectivity, regioselectivity, and substrate specificity.

Original languageEnglish
Pages (from-to)953-961
Number of pages9
JournalBiotechnology Progress
Volume28
Issue number4
DOIs
Publication statusPublished - 2012 Jul

Keywords

  • Absence of added cofactor
  • Asymmetric oxidation activities
  • Cross-linked protein complex
  • Electron transfer system

ASJC Scopus subject areas

  • Biotechnology

Fingerprint

Dive into the research topics of 'Cross-linked protein complex exhibiting asymmetric oxidation activities in the absence of added cofactor'. Together they form a unique fingerprint.

Cite this