Crystallographic features of electronic states in the highly-correlated electronic system Sr1-xSmxMnO3 around x = 0.50

Misato Yamagata*, Yasuhide Inoue, Yasumasa Koyama

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The highly-correlated electron system Sr1-xSmxMnO3 (SSMO) with the simple-perovskite structure has been found to exhibit fascinating electronic states accompanying antiferromagnetic and ferromagnetic orderings. It was, in particular, reported that the electronic state for 0.46 ≤ x ≤ 0.54 was characterized by the coexistence state consisting of the A-type antiferromagnetic and ferromagnetic states. However, the features of the coexistence state in this Sm-content range have not been understood yet. We have thus investigated the crystallographic features of prepared SSMO samples with 0.46 ≤ x ≤ 0.55, mainly by transmission electron microscopy. As a result, all prepared SSMO samples were first confirmed to have the orthorhombic-Pnma structure at 300 K. When the temperature was lowered from 300 K, in the case of x=0.47, the disordered-Pnma state was found to be transformed into an orbital-modulated (OM) state accompanying an incommensurate modulation. The notable feature of the OM state is that the state becomes unstable with increasing Sm contents at 100 K. In other words, the OM state was never changed into the CE-type state with the orbital and charge modulations. In addition, no orbital-ordered state for the A-type antiferromagnetic ordering was also found for 0.46 ≤ x ≤ 0.55.

Original languageEnglish
Title of host publicationTHERMEC 2016
EditorsChristof Sommitsch, Mihail Ionescu, Brajendra Mishra, Brajendra Mishra, Ernst Kozeschnik, T. Chandra
PublisherTrans Tech Publications Ltd
Pages2158-2163
Number of pages6
ISBN (Print)9783035711295
DOIs
Publication statusPublished - 2017
Event9th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2016 - Graz, Austria
Duration: 2016 May 292016 Jun 3

Publication series

NameMaterials Science Forum
Volume879
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752

Other

Other9th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2016
Country/TerritoryAustria
CityGraz
Period16/5/2916/6/3

Keywords

  • Coexistence state
  • Highly-correlated electronic material
  • SrSmMnO
  • Transmission electron microscopy

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Crystallographic features of electronic states in the highly-correlated electronic system Sr1-xSmxMnO3 around x = 0.50'. Together they form a unique fingerprint.

Cite this