Abstract
In wireless multi-hop networks such as ad hoc networks and sensor networks, backoff-based opportunistic routing protocols, which make a forwarding decision based on backoff time, have been proposed. In the protocols, each potential forwarder calculates the backoff time based on the product of a weight and global scaling factor. The weight prioritizes potential forwarders and is calculated based on hop counts to the destination of a sender and receiver. The global scaling factor is a predetermined value to map the weight to the actual backoff time. However, there are three common issues derived from the global scaling factor. First, it is necessary to share the predetermined global scaling factor with a centralized manner among all terminals properly for the backoff time calculation. Second, it is almost impossible to change the global scaling factor during the networks are being used. Third, it is difficult to set the global scaling factor to an appropriate value since the value differs among each local surrounding of forwarders. To address the aforementioned issues, this paper proposes a novel decentralized local scaling factor control without relying on a predetermined global scaling factor. The proposed method consists of the following three mechanisms: (1) sender-centric local scaling factor setting mechanism in a decentralized manner instead of the global scaling factor, (2) adaptive scaling factor control mechanism which adapts the local scaling factor to each local surrounding of forwarders, and (3) mitigation mechanism for excessive local scaling factor increases for the local scaling factor convergence. Finally, this paper evaluates the backoff-based opportunistic routing protocol with and without the proposed method using computer simulations.
Original language | English |
---|---|
Pages (from-to) | 2317-2328 |
Number of pages | 12 |
Journal | IEICE Transactions on Information and Systems |
Volume | E102D |
Issue number | 12 |
DOIs | |
Publication status | Published - 2019 |
Keywords
- Ad hoc network
- Backoff time
- Binary feedback
- Duplicate packet forwarding
- Opportunistic routing
- Scaling factor control
- Wireless sensor network
ASJC Scopus subject areas
- Software
- Hardware and Architecture
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering
- Artificial Intelligence