TY - JOUR
T1 - DeepM6ASeq
T2 - Prediction and characterization of m6A-containing sequences using deep learning
AU - Zhang, Yiqian
AU - Hamada, Michiaki
N1 - Funding Information:
Publication costs are funded by Waseda University [basic research budget]. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (KAKENHI) [grant numbers JP17K20032, JP16H05879, JP16H01318, and JP16H02484 to MH].
Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/31
Y1 - 2018/12/31
N2 - Background: N6-methyladensine (m6A) is a common and abundant RNA methylation modification found in various species. As a type of post-transcriptional methylation, m6A plays an important role in diverse RNA activities such as alternative splicing, an interplay with microRNAs and translation efficiency. Although existing tools can predict m6A at single-base resolution, it is still challenging to extract the biological information surrounding m6A sites. Results: We implemented a deep learning framework, named DeepM6ASeq, to predict m6A-containing sequences and characterize surrounding biological features based on miCLIP-Seq data, which detects m6A sites at single-base resolution. DeepM6ASeq showed better performance as compared to other machine learning classifiers. Moreover, an independent test on m6A-Seq data, which identifies m6A-containing genomic regions, revealed that our model is competitive in predicting m6A-containing sequences. The learned motifs from DeepM6ASeq correspond to known m6A readers. Notably, DeepM6ASeq also identifies a newly recognized m6A reader: FMR1. Besides, we found that a saliency map in the deep learning model could be utilized to visualize locations of m6A sites. Conculsion: We developed a deep-learning-based framework to predict and characterize m6A-containing sequences and hope to help investigators to gain more insights for m6A research. The source code is available at https://github.com/rreybeyb/DeepM6ASeq.
AB - Background: N6-methyladensine (m6A) is a common and abundant RNA methylation modification found in various species. As a type of post-transcriptional methylation, m6A plays an important role in diverse RNA activities such as alternative splicing, an interplay with microRNAs and translation efficiency. Although existing tools can predict m6A at single-base resolution, it is still challenging to extract the biological information surrounding m6A sites. Results: We implemented a deep learning framework, named DeepM6ASeq, to predict m6A-containing sequences and characterize surrounding biological features based on miCLIP-Seq data, which detects m6A sites at single-base resolution. DeepM6ASeq showed better performance as compared to other machine learning classifiers. Moreover, an independent test on m6A-Seq data, which identifies m6A-containing genomic regions, revealed that our model is competitive in predicting m6A-containing sequences. The learned motifs from DeepM6ASeq correspond to known m6A readers. Notably, DeepM6ASeq also identifies a newly recognized m6A reader: FMR1. Besides, we found that a saliency map in the deep learning model could be utilized to visualize locations of m6A sites. Conculsion: We developed a deep-learning-based framework to predict and characterize m6A-containing sequences and hope to help investigators to gain more insights for m6A research. The source code is available at https://github.com/rreybeyb/DeepM6ASeq.
KW - Deep learning
KW - N6-methyladenosine
KW - RNA modification
UR - http://www.scopus.com/inward/record.url?scp=85059265094&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059265094&partnerID=8YFLogxK
U2 - 10.1186/s12859-018-2516-4
DO - 10.1186/s12859-018-2516-4
M3 - Article
C2 - 30598068
AN - SCOPUS:85059265094
SN - 1471-2105
VL - 19
JO - BMC Bioinformatics
JF - BMC Bioinformatics
M1 - 524
ER -