Degeneracy loci classes in K-theory — determinantal and Pfaffian formula

Thomas Hudson*, Takeshi Ikeda, Tomoo Matsumura, Hiroshi Naruse

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

We prove a determinantal formula that describes the K-theoretic degeneracy loci classes for Grassmann bundles. We further prove Pfaffian formulas for symplectic and odd orthogonal Grassmann bundles. The former generalizes Damon–Kempf–Laksov's determinantal formula, and the latter generalize Pragacz–Kazarian's formulas for the Chow ring.

Original languageEnglish
Pages (from-to)115-156
Number of pages42
JournalAdvances in Mathematics
Volume320
DOIs
Publication statusPublished - 2017 Nov 7
Externally publishedYes

Keywords

  • Determinant
  • K-theory
  • Pfaffian
  • Schubert calculus

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint

Dive into the research topics of 'Degeneracy loci classes in K-theory — determinantal and Pfaffian formula'. Together they form a unique fingerprint.

Cite this