TY - GEN
T1 - Design and implementation of two-level synchronization for an interactive music robot
AU - Otsuka, Takuma
AU - Nakadai, Kazuhiro
AU - Takahashi, Tom
AU - Komatanj, Kazunori
AU - Ogata, Tetsuya
AU - Okuno, Hiroshi G.
PY - 2010
Y1 - 2010
N2 - Our goal is to develop an interactive music robot, i.e., a robot that presents a musical expression together with humans. A music interaction requires two important functions: synchronization with the music and musical expression, such as singing and dancing. Many instrument-performing robots are only capable of the latter function, they may have difficulty in playing live with human performers. The synchronization function is critical for the interaction. We classify synchronization and musical expression into two levels: (1) the rhythm level and (2) the melody level. Two issues in achieving two-layer synchronization and musical expression are: (1) simultaneous estimation of the rhythm structure and the current part of the music and (2) derivation of the estimation confidence to switch behavior between the rhythm level and the melody level. This paper presents a score following algorithm, incremental audio to score alignment, that conforms to the two-level synchronization design using a particle filter. Our method estimates the score position for the melody level and the tempo for the rhythm level. The reliability of the score position estimation is extracted from the probability distribution of the score position. Experiments are carried out using polyphonic jazz songs. The results confirm that our method switches levels in accordance with the difficulty of the score estimation. When the tempo of the music is less than 120 (beats per minute; bpm), the estimated score positions are accurate and reported; when the tempo is over 120 (bpm), the system tends to report only the tempo to suppress the error in the reported score position predictions.
AB - Our goal is to develop an interactive music robot, i.e., a robot that presents a musical expression together with humans. A music interaction requires two important functions: synchronization with the music and musical expression, such as singing and dancing. Many instrument-performing robots are only capable of the latter function, they may have difficulty in playing live with human performers. The synchronization function is critical for the interaction. We classify synchronization and musical expression into two levels: (1) the rhythm level and (2) the melody level. Two issues in achieving two-layer synchronization and musical expression are: (1) simultaneous estimation of the rhythm structure and the current part of the music and (2) derivation of the estimation confidence to switch behavior between the rhythm level and the melody level. This paper presents a score following algorithm, incremental audio to score alignment, that conforms to the two-level synchronization design using a particle filter. Our method estimates the score position for the melody level and the tempo for the rhythm level. The reliability of the score position estimation is extracted from the probability distribution of the score position. Experiments are carried out using polyphonic jazz songs. The results confirm that our method switches levels in accordance with the difficulty of the score estimation. When the tempo of the music is less than 120 (beats per minute; bpm), the estimated score positions are accurate and reported; when the tempo is over 120 (bpm), the system tends to report only the tempo to suppress the error in the reported score position predictions.
UR - http://www.scopus.com/inward/record.url?scp=77958581833&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77958581833&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:77958581833
SN - 9781577354659
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 1238
EP - 1244
BT - AAAI-10 / IAAI-10 - Proceedings of the 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference
PB - AI Access Foundation
T2 - 24th AAAI Conference on Artificial Intelligence and the 22nd Innovative Applications of Artificial Intelligence Conference, AAAI-10 / IAAI-10
Y2 - 11 July 2010 through 15 July 2010
ER -