TY - JOUR
T1 - Design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems
AU - Miyazaki, Hiroshi
AU - Iwai, Sadanori
AU - Otani, Yasumi
AU - Takahashi, Masahiko
AU - Tosaka, Taizo
AU - Tasaki, Kenji
AU - Nomura, Shunji
AU - Kurusu, Tsutomu
AU - Ueda, Hiroshi
AU - Noguchi, So
AU - Ishiyama, Atsushi
AU - Urayama, Shinichi
AU - Fukuyama, Hidenao
N1 - Publisher Copyright:
© 2016 IOP Publishing Ltd.
PY - 2016/8/12
Y1 - 2016/8/12
N2 - A project on the development of REBa2Cu3O7-δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial and radial 5 gauss line locations were less than 5 m and 4.2 m respectively.
AB - A project on the development of REBa2Cu3O7-δ (REBCO) magnets for ultra-high-field magnetic resonance imaging (MRI) was started in 2013. Since REBCO-coated conductors feature high mechanical strength under tensile stress and high critical current density, use of REBCO coils would allow superconducting magnets to be made smaller and lighter than conventional ones. In addition, a conduction-cooled superconducting magnet is simpler to use than one cooled by a liquid helium bath because the operation and maintenance of the cryogenic system become simpler, without the need to handle cryogenic fluid. Superconducting magnets for MRI require homogeneous, stable magnetic fields. The homogeneity of the magnetic field is highly dependent on the coil shape and position. Moreover, in REBCO magnets, the screening-current-induced magnetic field, which changes the magnetic field distribution of the magnet, is one of the critical issues. In order to evaluate the magnetic field homogeneity and the screening-current-induced magnetic field, a 1 T model magnet and some test coils were fabricated. From an evaluation of the 1 T model magnet, it was found that the main reason for magnetic field inhomogeneity was the tolerances in the z-axis positions of the coils, and therefore, it is important to control the gap between the single pancakes. In addition, we have already demonstrated the generation of an 8.27 T central magnetic field at 10 K with a small test coil. The screening-current-induced magnetic field was 0.43 T and was predictable by using an electromagnetic field simulation program. These results were reflected in the design of a conduction-cooled 9.4 T REBCO magnet for whole-body MRI systems. The magnet was composed of six main coils and two active shield coils. The total conductor length was 581 km, and the stored energy was 293 kJ. The field inhomogeneity was 24 ppm peak to peak and 3 ppm volume-root-mean-square (VRMS) for a 500 mm diameter spherical volume (DSV). The axial and radial 5 gauss line locations were less than 5 m and 4.2 m respectively.
KW - REBCO
KW - conduction-cooled
KW - ultra-high-field MRI
UR - http://www.scopus.com/inward/record.url?scp=84989964164&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84989964164&partnerID=8YFLogxK
U2 - 10.1088/0953-2048/29/10/104001
DO - 10.1088/0953-2048/29/10/104001
M3 - Article
AN - SCOPUS:84989964164
SN - 0953-2048
VL - 29
JO - Superconductor Science and Technology
JF - Superconductor Science and Technology
IS - 10
M1 - 104001
ER -