Detecting malware-infected devices using the HTTP header patterns

Sho Mizuno, Mitsuhiro Hatada, Tatsuya Mori, Shigeki Goto

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Damage caused by malware has become a serious problem. The recent rise in the spread of evasive malware has made it difficult to detect it at the pre-infection timing. Malware detection at post-infection timing is a promising approach that fulfills this gap. Given this background, this work aims to identify likely malware-infected devices from the measurement of Internet traffic. The advantage of the traffic-measurementbased approach is that it enables us to monitor a large number of endhosts. If we find an endhost as a source of malicious traffic, the endhost is likely a malware-infected device. Since the majority of malware today makes use of the web as a means to communicate with the C&C servers that reside on the external network, we leverage information recorded in the HTTP headers to discriminate between malicious and benign traffic. To make our approach scalable and robust, we develop the automatic template generation scheme that drastically reduces the amount of information to be kept while achieving the high accuracy of classification; since it does not make use of any domain knowledge, the approach should be robust against changes of malware. We apply several classifiers, which include machine learning algorithms, to the extracted templates and classify traffic into two categories: malicious and benign. Our extensive experiments demonstrate that our approach discriminates between malicious and benign traffic with up to 97.1% precision while maintaining the false positive rate below 1.0%.

Original languageEnglish
Pages (from-to)1370-1379
Number of pages10
JournalIEICE Transactions on Information and Systems
VolumeE101D
Issue number5
DOIs
Publication statusPublished - 2018 May

Keywords

  • Automatic template generation
  • Botnet detection
  • HTTP header
  • Malicious traffic

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Detecting malware-infected devices using the HTTP header patterns'. Together they form a unique fingerprint.

Cite this