Abstract
We propose a method for the estimation of the degree of a driver's drowsiness on basis of changes in facial expressions captured by an IR camera. Typically, drowsiness is accompanied by falling of eyelids. Therefore, most of the related studies have focused on tracking eyelid movement by monitoring facial feature points. However, textural changes that arise from frowning are also very important and sensitive features in the initial stage of drowsiness, and it is difficult to detect such changes solely using facial feature points. In this paper, we propose a more precise drowsiness-degree estimation method considering wrinkles change by calculating local edge intensity on faces that expresses drowsiness more directly in the initial stage.
Original language | English |
---|---|
Pages | 749-753 |
Number of pages | 5 |
DOIs | |
Publication status | Published - 2013 Jan 1 |
Event | 2013 2nd IAPR Asian Conference on Pattern Recognition, ACPR 2013 - Naha, Okinawa, Japan Duration: 2013 Nov 5 → 2013 Nov 8 |
Conference
Conference | 2013 2nd IAPR Asian Conference on Pattern Recognition, ACPR 2013 |
---|---|
Country/Territory | Japan |
City | Naha, Okinawa |
Period | 13/11/5 → 13/11/8 |
Keywords
- Drowsiness level estimation
- Edge intensity
- Face texture analysis
- K-NN
- Wrinkles detection
ASJC Scopus subject areas
- Computer Vision and Pattern Recognition