Development of a aural real-time rhythmical and harmonic tracking to enable the musical interaction with the Waseda Flutist robot

Klaus Petersen*, Jorge Solis, A. Takanishi

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Citations (Scopus)

Abstract

The Waseda Flutist Robot is able to play the flute at the level of an intermediate human player. This ability opens a wide field of possibilities to research human-robot musical interaction. This research is focused on enabling the flutist robot to interact more naturally with musical partners in the context of a Jazz band. For this purpose a Musical-Based Interaction System (MbIS) has been proposed to enable the robot to process both visual and aural cues coming throughout the interaction with musicians. In a previous publication, we have concentrated on the implementation of visual communication techniques. We created an interaction interface that enabled the robot to detect instrument gestures of partner musicians during a musical performance. Two computer vision approaches were implemented to create a two-skill-level interface for visual human-robot interaction in a musical context. In this paper we focus on the aural perception system of the robot. The method introduced here enables the robot to, a suitable environment provided, detect the tempo and harmony of a partner musician's play, with a specific focus on improvisation. We achieve this by examining the rhythmical and harmonic characteristics of the recorded sound. We apply the same approach to amplitude and frequency spectrum, thus, in the former case tracking amplitude transients. In the latter case, as we focus on communication with monophonic woodwind instruments, we follow the most prominent peak in the frequency spectrum. We specifically use a similar technique for the audio analysis as we did for our previous research on motion tracking. From the experimental results, we have shown that after implementing our algorithm the robot is able to correctly recognize a number of rhythms and harmonies. It is able to engage in a simple form of stimuli and reaction play with a human musician.

Original languageEnglish
Title of host publication2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Pages2303-2308
Number of pages6
DOIs
Publication statusPublished - 2009 Dec 11
Event2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 - St. Louis, MO, United States
Duration: 2009 Oct 112009 Oct 15

Publication series

Name2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009

Conference

Conference2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Country/TerritoryUnited States
CitySt. Louis, MO
Period09/10/1109/10/15

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Development of a aural real-time rhythmical and harmonic tracking to enable the musical interaction with the Waseda Flutist robot'. Together they form a unique fingerprint.

Cite this