Development of assisted-robotic system designed to measure the wave intensity with an ultrasonic diagnostic device

Ryu Nakadate*, Hisato Uda, Hiroaki Hirano, Jorge Solis, Atsuo Takanishi, Eiichi Minagawa, Motoaki Sugawara, Kiyomi Niki

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Citations (Scopus)

Abstract

In recent years, due to the increasing rate of elderly people in Japan, the needs to detect adults' diseases at the early stage becomes a high priority. In particular, an increased interest in detecting heart and cerebrovascular diseases at an early stage may allow clinicians to begin treatment sooner, when interventions are generally more effective and less expensive. Recently, the Wave Intensity (WI) has been proposed as a new hemodynamic index that provides information about the dynamic behavior of the heart and the vascular system and their interaction. However; the repetitiveness and accuracy of the WI measurement depend on the precision of the positioning of the ultrasound probe. Therefore a positioning device for ultrasound probe is required. Such a device should not only be used to keep the position but also for the fine positioning of the probe. For this purpose, at Waseda University, we have proposed the development of a robot system to assist a carotid blood flow measurement using ultrasound diagnostic equipments. In this paper, the development of Waseda-Tokyo Women's Medical-Aloka Blood Flow Measurement System No. 1 Refined II (WTA-1RII) is detailed. The system consists of an ultrasound diagnostic device, a 6-DOFs parallel link manipulator, a serial link passive arm, ball joint, and a joystick type controller. The WTA-1RII has improved the design of the gravity compensation mechanism. In addition, a genetic algorithm has by implemented to determine the optimal link's position of the 6-DOFs parallel manipulator to increase the workspace. Finally, a set of experiments were carried out to determine the usability of the proposed system.

Original languageEnglish
Title of host publication2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Pages510-515
Number of pages6
DOIs
Publication statusPublished - 2009 Dec 11
Event2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009 - St. Louis, MO, United States
Duration: 2009 Oct 112009 Oct 15

Publication series

Name2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009

Conference

Conference2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009
Country/TerritoryUnited States
CitySt. Louis, MO
Period09/10/1109/10/15

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Human-Computer Interaction
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Development of assisted-robotic system designed to measure the wave intensity with an ultrasonic diagnostic device'. Together they form a unique fingerprint.

Cite this