TY - GEN
T1 - Development of high performance oxidizer turbo-pump
AU - Takida, J.
AU - Yoshikawa, K.
AU - Ogawara, A.
AU - Atsumi, M.
AU - Miyagawa, K.
AU - Kobayashi, K.
AU - Miyawaki, T.
PY - 2007
Y1 - 2007
N2 - In order to develop a high performance turbo-pump which consists of many components such as pump, turbine, bearings, shaft seals, etc., it is necessary not only to improve the performance of such component but also to reach good balance in performance and strength as a system, in other words, integration of performance and reliability is important. Efficiency of turbo-pump for rocket engines is generally around 30%, and its performance does not usually become a problem for the engine system. An important thing is to reduce an unstable dynamic load by cavitation of a pump. In addition, it is also important that there is an enough operation margin for components such as shaft seals and bearings. Mitsubishi Heavy Industries (MHI) has developed an oxidizer turbo-pump in the in-house research program. Through this development, new approach was tried for these problems. In this paper, the technical feature of this oxidizer turbo-pump and the results of component tests and turbo-pump tests are presented. The development approach for the oxidizer turbo-pump enabled achievement of the stable operation of the oxidizer turbo-pump in a short development period and few tests, and its effectiveness has demonstrated.
AB - In order to develop a high performance turbo-pump which consists of many components such as pump, turbine, bearings, shaft seals, etc., it is necessary not only to improve the performance of such component but also to reach good balance in performance and strength as a system, in other words, integration of performance and reliability is important. Efficiency of turbo-pump for rocket engines is generally around 30%, and its performance does not usually become a problem for the engine system. An important thing is to reduce an unstable dynamic load by cavitation of a pump. In addition, it is also important that there is an enough operation margin for components such as shaft seals and bearings. Mitsubishi Heavy Industries (MHI) has developed an oxidizer turbo-pump in the in-house research program. Through this development, new approach was tried for these problems. In this paper, the technical feature of this oxidizer turbo-pump and the results of component tests and turbo-pump tests are presented. The development approach for the oxidizer turbo-pump enabled achievement of the stable operation of the oxidizer turbo-pump in a short development period and few tests, and its effectiveness has demonstrated.
UR - http://www.scopus.com/inward/record.url?scp=36749030604&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=36749030604&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:36749030604
SN - 1563479036
SN - 9781563479038
T3 - Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
SP - 4870
EP - 4876
BT - Collection of Technical Papers - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
T2 - 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
Y2 - 8 July 2007 through 11 July 2007
ER -