Development of highly integrated quartz micro-electro-mechanical system tilt sensor

Jinxing Liang*, Fusao Kohsaka, Takahiro Matsuo, Xuefeng Li, Ken Kunitomo, Toshitsugu Ueda

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    In this paper, we report the research progress of a recently developed quartz micro-electro-mechanical system (MEMS)-based capacitive tilt sensor using bulk micromachining technology. The sensor, which is composed of a sensitive cantilever, proof mass and high-aspect- ratio vertical comb electrodes in wafer thickness was fabricated using an anisotropic wet etching process on a 100-um-thick z-cut quartz wafer. A ceramic package was designed for mounting the sensor and integrating the capacitance to a digital AD7746 circuit (Analog Devices). The sensor was mounted on the package using a flip chip method via a AuSn alloy solder. The dimensions of the integrated sensing system are 12 × 12 × 3.2 mm3 and the weight of the system is below 1 g. The measured typical sensor sensitivity is 632fF/° when the applied voltage is 0.625 V. The peak-to-peak output signal drift is limited to 1 fF in 2 h. Good linearity was achieved in the range of ±1°. High-precision detection at 0.001° which corresponds to micro-g acceleration, was also demonstrated.

    Original languageEnglish
    JournalJapanese Journal of Applied Physics
    Volume48
    Issue number6 PART 2
    DOIs
    Publication statusPublished - 2009 Jun

    ASJC Scopus subject areas

    • Engineering(all)
    • Physics and Astronomy(all)

    Fingerprint

    Dive into the research topics of 'Development of highly integrated quartz micro-electro-mechanical system tilt sensor'. Together they form a unique fingerprint.

    Cite this