Diamond surface conductivity: Properties, devices, and sensors

Christopher I. Pakes, Jose A. Garrido, Hiroshi Kawarada

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

Hydrogen termination of diamond lowers its ionization energy, driving electron transfer from the valence band into an adsorbed water layer or to a strong molecular acceptor. This gives rise to p-type surface conductivity with holes confined to a subsurface layer of a few nanometers thickness. The transfer doping mechanism, the electronic behavior of the resulting hole accumulation layer, and the development of robust field-effect transistor (FET) devices using this platform are reviewed. An alternative method of modulating the hole carrier density has been developed based upon an electrolyte-gate architecture. The operation of the resulting solution-gated FET architecture in two contemporary applications will be described: the charge state control of nitrogen-vacancy centers in diamond and biosensing. Despite 25 years of work in this area, our knowledge of surface conductivity of diamond continues to develop.

Original languageEnglish
Pages (from-to)542-548
Number of pages7
JournalMRS Bulletin
Volume39
Issue number6
DOIs
Publication statusPublished - 2014 Jun

Keywords

  • Devices
  • Diamond
  • Electronic material

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Diamond surface conductivity: Properties, devices, and sensors'. Together they form a unique fingerprint.

Cite this